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Abstract
Recent methods for joint entities and relation extraction using triplets do not model the confidence with which these triplets are extracted.
We model the confidence of a triplet conditioned on previous predictions. We design a loss function in an improved sequence-to-sequence
model, that estimates the true parameters for the computation of the confidence score. Evaluation shows that our method significantly
outperforms previous methods. It is also more stable and leaves the possibility of tuning against a customised precision-recall trade-off.

1. Introduction
Recognition of entities and extraction of relations are

two basic tasks in information extraction. Joint extraction
of entities and relations consists in performing both at the
same time. Given the sentence, “Born1 in2 Seattle3 ,4
Washington5 ,6 William7 Henry8 Gates9 is10 the11
principle12 founder13 of14 Microsoft15 Corporation16 .17”
as input, and { birthplace, founder, company } as a set of
predefined relations, we want to directly extract (William
Henry Gates, birthplace, Seattle), (William Henry Gates,
birthplace, Washington), (Microsoft Corporation, founder,
William Henry Gates), (William Henry Gates, company,
Microsoft Corporation).

Earlier methods followed a pipeline approach. They
identified relations after all entities are recognised. This
does not model the correlation between the two tasks. In
particular, relations between entities may not be unique.
They may overlap (Zeng, 2018) or exhibit some corre-
lation. For instance, the triplet (Microsoft Corporation,
founder, William Henry Gates) and the triplet (William
Henry Gates, company, Microsoft Corporation) are built
on the same pair of entities.

Recently, methods which directly extract entities and
relations using triplets (see below, Section 2.1.) gave a new
perspective on the task. (Zheng, 2017) proposed a tagging
scheme which integrates the relation extraction step into
this tagging scheme. For each token in a sentence, it as-
signs a tag that already indicates which relation this token
can be involved in. However, the method cannot handle
overlapped triplets. (Zeng, 2018) proposed a sequence-to-
sequence based method, which models the extraction result
as a sequence of triplets. The relation extraction step takes
place just after two correlated entities are extracted.

Triplet-based methods aggregate two processes which
utilise similar information, while the pipeline methods ag-
gregate similar processes (entity recognition and relation
extraction) together. Intuitively, the information needed to
recognise the two entities William Henry Gates and Wash-
ington should be located close to the information related to
their relation birthplace. The information for recognising
the two entities William Henry Gates and Microsoft Cor-
poration should also be located in the neighbourhood of the
information needed to extract the relation founder. Hence,
it is more natural to extract a triplet before starting to ex-
tract another one, as the information for this other triplet is

often supported by the same part of the sentence.
However, triplet-based methods do not model the plau-

sibility of each triplet. Knowing this plausibility can bring
two important benefits: flexibility in tuning and better se-
lection of relevant triplets. As for flexibility, it will be eas-
ier to tune either against precision or recall to better fit for
different downstream tasks like augmenting a knowledge
base. As for better selection, rather than letting the model
decide which triplets should be discarded, leaving this to a
final selection process brings more freedom to select actu-
ally relevant triplets.

The contribution of this paper is a method to achieve
the goal of outputting triplets of entities and relation in
confidence order. We design a probabilistic model using a
neural network, which approximates this goal by minimis-
ing a loss function. We study several termination meth-
ods using tuneable thresholds so as to determine the confi-
dence value for each triplet at each step. We implement the
probabilistic model using a sequence-to-sequence model.
Our model significantly improves over the results reported
in (Zeng, 2018). A case study shows that our loss func-
tion has the ability of outputting more valid triplets than
baseline loss functions.

2. Preliminaries
2.1. Triplets

Inside a given sentence x, a triplet consists of two enti-
ties a single relation between them, usually subject, ob-
ject and relation. The relation must belong to a prede-
fined relation type set R. An entity is defined by its sup-
port, i.e., its start and end positions. A triplet is thus de-
fined by four indices, beginning and end of subject and
object, i.e., (subB, subE, objB, and objE) and a rela-
tion r between the subject and the object. It is noted by
(subB, objB, subE, objE, r).

For example, with sentence given in Section 1.), the
entity Washington is represented as (5, 5), William Henry
Gates as (7, 9), and the triplet (William Henry Gates, birth-
place, Washington) as (5, 7, 5, 9, birthplace).

2.2. Probabilistic model
In the following section, we explain our notations.

Given a sentence, the goal is to exactly predict a set of
reference triplets Y . Here, in addition, we want to model
the probability p(Y|x) that the set of triplet Y is the actual



final result for the given sentence x. Triplets are output
one at a time, at each time step. At each time step t, we
thus estimate how likely of a triplet yt is plausible out of
all possible triplets, given the previous triplets output y<t
This probability is noted p(yt|y<t, x).

A special null triplet yτt will be used for termination. Its
probability reflects how unreasonable further prediction is.

The probability of a triplet at time step t, p(yt|y<t, x),
can be estimated using six factors. For a time step t, we can
estimate the probability for each token in the sentence to be
an index in the triplet, i.e., the beginning of the subject or
the object, subB or objB, or their end, subE or objE, in
that order. This makes four factors. We can estimate the
probability of each relation to be the relation in the triplet.
This is a fifth factor. We denote each of these factors as y1t ,
. . . , y5t . So the model estimates p(yst |ŷ<st , ŷ<t, x) for each
step s in {1, . . . , 5} at each time step t.

Finally, we can estimate the termination probability at
time step t for yτt as p(yτt , ŷ<t+1, x).

Combining all above factors, the probability of a triplet
at time step t is p(yτt , ŷ<t+1, x)×

∏5
s=1 p(y

s
t |ŷ<s<t , ŷ<t, x).

In the rest of this paper, we note p(yst ) for
p(yst |ŷ<st , ŷ<t, x), and p(yτt ) for p(yτt , ŷ<t+1, x). Of
these two probabilities, p(y|y<t, x) stands for the fact that
the triplet is valid at this time step, out of all the possible
triplets in the sentence, and p(yτ |y, y<t, x) expresses how
much it is an invalid triplet.

3. Method
3.1. Loss function

An embarrassing problem is that no order for triplets is
provided in actual benchmarks. Ranking the triplets in ar-
bitrary order to treat them as a sequence is a view adopted
in the MultiDecoder system (Zeng, 2018). A negative-log-
likelihood loss function solves the problem..

We propose a different loss function to model the plau-
sibility of order. Instead of maximising on one triplet, we
maximise the probabilities of all possible predictions at
each time step by taking the mean log-likelihood over all
possible predictions.

The possible predictions for t, s are the corresponding
elements in the set of possible triplets Yst at time step t, s.
We define Yst based on our probabilistic model: for each
time step t, we estimate p(yst |y<st , y<t, x) at this time step.
Note that y<t are predicted triplets before t. Under this
assumption, we expect the model to predict what in Y has
not been predicted yet. It is the set difference between Y
and the set of all y<t, denoted by Yt.

As an additional condition on y<st , the factors for a
triplet at a given time step should be consistent in one
triplet. Thus, triplets in Yt which do not match elements
predicted previously y<st should be excluded. Hence, Yst
consists of all triplets in Yt which match previous predic-
tions y<st .

Our loss function can be separated into two cases:

Not all reference triplets have been predicted: Y 6= ∅.
In this case, we sum up all negative log-likelihoods over all
possible predictions:

l(x,Y, s, t) =
1

|Yst |
∑
y∈Yst

− log (p(ys)(1− p(yτt ))) (1)

l(x,Y, s, t) =
1

|Yst |
∑
y∈Yst

− log (p(ys)(1− p(yτt ))) (2)

Let us call nt the number of generator time steps such that
|Yst | 6= 0 at decoder time step t. We let l(x,Y, s, t) = 0
for all s, t such that |Yst | = 0. The final loss at decoder
time step t is normalised so that the case Ys = ∅ does not
affect the final result.

l(x,Y, t) =
1

nt

5∑
s=1

l(x,Y, s, t) (3)

To train termination probabilities, we use the simple loss:
lτ (x,Y, t) = − log p(yτt ) (4)

All reference triplets have been predicted: Y = ∅. In
this case, we maximise the termination probability directly
using Formula (4).

l(x,Y, t) = lτ (x,Y, t) = − log p(yτt ) (5)

3.2. Termination methods (TM)
The above loss functions defined on sets of triplets al-

low us to compute a confidence score for each prediction.

Baseline termination method A simple termination
method consists in stopping when the termination class is
predicted, i.e., when it has the largest probability. This can
be a probability larger than the probability of each other
triplet: p(yt) < p(yτt ) (6)

Termination method with threshold Since the set loss
ranks prediction in plausibility order, we can sample first
n reference as top n prediction. So, we can introduce
a threshold to baseline termination method to control the
number of triplets predicted.

p(yt) < αp(yτt ) i.e.,
p(yt)

p(yτt )
< α (7)

α is a tuneable threshold valued from 0 to infinity. The
left fraction can be considered as a confidence score which
measures how much the prediction set is close to the refer-
ence set until decoder time step t.

Other termination methods By replacing the numera-
tor and the denominator in the left fraction, we obtain dif-
ferent ways to calculate a confidence score. Options for
the numerator are: 1, p(yt),

∏
t p(yt). p(yt) is a predicted

triplet probability which should be small after all valid pre-
diction is predicted.

∏
t p(yt) is the accumulated proba-

bility over all previously predicted triplets; this measures
the probability over all outputted triplets. The denominator
can be replaced by 1 or p(yτt ). The left of Figure 3 graphs
recall–precision for such variations of the numerator and
the denominator.

3.3. Model
We use an improved version of MultiDecoder (Zeng,

2018) to approximate our probabilistic model. They use
a seq2seq model which consists of an encoder and a
decoder. Given a sentence consisting of words repre-
sented by word embeddings w1,w2, · · · ,w|x|, the en-
coder outputs a representation for each word in sentence,
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Figure 1: Prediction example that illustrates our loss function. Notice the decoder time steps t and the generator steps s.
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Figure 2: Overview of our model. The red boxes are vectors, the blue boxes are functions.

denoted by hw1 ,h
w
2 , · · · ,hw|x|, with hwi ∈ Rdh , or Hw =

[hw1 ,h
w
2 , · · · ,hw|x|]

T ,Hw ∈ R|x|×dh . dh is the hidden size
of the seq2seq model. At each decoder time step, the de-
coder receives a vector representation of a triplet predicted
during the previous time step as input, and the hidden state
from the generator as a hidden state. It transforms the hid-
den state to initialise the current generator It also outputs a
vector to generate the probability of the next triplet.

We provide improvements to the MultiDecoder model
in the two following ways:

One triplet at each decoder step The MultiDecoder
model has several decoders, one per triplet. Differently,
we predict one triplet at each decoder time step. We build
a triplet representation and a generator to convert triplet
into a fixed-size hidden vector, and a generator to generate
a triplet probability from a fixed-size hidden vector.

Dedicated termination probability The MultiDecoder
model adds an extra class “NA” to in entities and relations
to infer when to terminate. Instead, we use a dedicated
termination step in the generator.

3.3.1. Triplet representation
We represent a triplet by a fixed-size hidden vector of

size dh. For that, we use a one-hot representation for rela-
tion types in relation set R, denoted as r1, · · · , r|R|, with
ri ∈ RR. We also use the encoder output to represent in-
dices. We concatenate all vectors representing the indices
in a triplet and use a linear transformation followed by a
non-linear function to get a dh sized vector, as below.

y = tanh(Wrepr


rr

hesubB
hesubE
heobjB
heobjE

), (8)

with trainable parameters Wrepr ∈ Rdh×(dr+4dh).

3.3.2. Generator
To generate a triplet yt from a hidden vector ht at each

decoder time step, we use a cascade of steps to fit for our
probabilistic model. They are explained below.

To transform the hidden states among steps, we use



Figure 3: Precision-Recall curves for different termination methods on the left.
F1 score w.r.t. the number of reference triplets per sentence on the right.

Precision Recall F1
NovelTagging 0.624 ± N/P 0.317 ± N/P 0.420 ± N/P
MultiDecoder 0.610 ± N/P 0.566 ± N/P 0.587 ± N/P
Base (repr. + gen.) 0.724 ± 0.004 0.717 ± 0.005 0.720 ± 0.004
+ set loss + baseline TM 0.774 ± 0.008 0.778 ± 0.005 0.777 ± 0.003
+ set loss + best TM 0.825 ± 0.007 0.759 ± 0.006 0.791 ± 0.004

Table 1: Experimental results. Results are reported in x̄± s form, where x̄ indicates the mean and s indicates the standard
deviation. Performance for compared methods are copied from (Zeng, 2018) (no standard deviation provided).

an LSTM (Hochreiter and Schmidhuber, 1997). It is ini-
tialised with the decoder’s hidden state and a cell state.
Each step receives the representation of the prediction in
the previous time step as input, and outputs a hidden state
hgs+1 for the prediction in the next time step. We also feed
the hidden state to the next decoder step. Figure 2 explains
this.

Steps 1–4: Generate indices We use a copy-attention
mechanism as in the MultiDecoder model to generate each
index. For each s, we estimate the probability of yst by
calculating the attention score between the hidden state and
the memory:

p(yst ) = softmax(Hehgs) (9)

yst is just the index with the highest probability. The rep-
resentation heyst is used as input to the generator LSTM to
get the hidden state hgs+1 for the next index.

Step 5: Generate relation We use a linear transforma-
tion combined with a softmax to estimate the probability
p(y4t ) of a relation:

p(y4t ) = softmax(W5h
g
5) (10)

W5 ∈ Rdh×dh is a trainable parameter matrix. We then
transform the one-hot vector of the relation into vector of
fixed size dh using another linear transformation. The re-
sult is used as input to the generator LSTM to generate hgτ
similarly as in the previous steps.

Step 6: Generate termination score This step is ded-
icated for predicting a termination probability p(yτt ). We
use a sigmoid for that:

p(yτt ) = sigmoid(Wτh
g
τ ) (11)

Wτ ∈ R1×dh is a trainable parameter matrix.

4. Experiments
4.1. Datasets, metrics, hyperparameters, and

compared methods
We conduct experiments on part of the public data-set

produced by (Ren, 2017). It consists of about 294,000
examples of training data sampled from New York Times
News from 1989 to 2007. 228,000 examples do not contain
any triplet. We filter out such examples or sentences with
more than 100 words and obtain more than 59,000 training
examples. We select 10,000 examples out of them as our
validation set, and 10,000 examples as our evaluation set,
as (Zeng, 2018) do.

We use a bi-LSTM version of the seq2seq model (Lu-
ong et al., 2015) with input feed, global attention, dropout.
Word embeddings are trained on the training set using
Word2Vec (Mikolov, 2013). As in (Zeng, 2018), the em-
bedding size is 100, the hidden size is 1,000.

We compare our method to two other triplet-based
methods described in Section 1.: NovelTagging (Zheng,
2017) and MultiDecoder (Zeng, 2018). We use standard
micro Precision, Recall and F1 score to evaluate the re-
sults. An entity is correct if the first token in the entity
is correct. A triplet is correct if the two entities and the
relation in it are correct.

4.2. Results
Table 1 gives results of evaluation. Our base method

with model improvement alone drastically increases the
F1 score compared to the two other triplet-based meth-
ods. The models with set loss still increase their final



Baseline loss Set loss + acc-y-τ
subject relation object p r subject relation object p r

Prime Minister Paul Martin made a campaign promise to ban handguns in Canada to put an end to
a rash of gang shootings in Toronto.
1 Paul Martin contains Toronto P N Canada contains Toronto P P
2 Paul Martin nationality Toronto N N Paul Martin nationality Canada P P
3 Canada admin div Toronto N P Canada admin div Toronto N P
4 Canada admin div Toronto N N Toronto admin d/c Canada N P
5 Canada admin div Toronto N N Paul Martin nationality Canada N N
6 Canada admin div Toronto N N Canada contains Toronto N N
Like so many other people here, Pedro, a landscaper from Chiapas, Mexico, is desperately trying to
get out of Biloxi.
1 Mexico contains Chiapas P P Mexico contains Chiapas P P
2 Chiapas admin d/c Mexico P P Mexico admin div Chiapas N P
3 Mexico admin div Chiapas P P Chiapas admin d/c Mexico N P
4 Biloxi admin div Chiapas N N Mexico capital Chiapas N N
5 Mexico admin div Chiapas N N Pedro nationality Mexico N P
6 Mexico admin div Chiapas N N Chiapas contains Biloxi N N

Table 2: Results for two sentences by two systems: baseline loss and set loss + acc-y-τ . The p column indicates if the
triplet was kept by the termination method (P) or not (N). The r column indicates if triplet is reference triplet (P) or not (N).
admin div stands for administration division. Its first entity should be a country. admin d/c is the reverse relation.

F1 scores. This empirically proves that avoiding order
selection helps. The baseline termination method (TM)
performs well. However, it does not allow to tune the
precision-recall as other termination methods do for which
the precision-recall curve is given in Figure 3 (left): a bal-
ance between precision and recall is possible if the thresh-
old is tuned (see remark on flexibility in Section 1.).

The right graph in of Figure 3 shows the performance
w.r.t. the number of triplets per sentence. Since the number
of examples with more than four triplets is small, we report
five cases where the number of triplets per example is 1, 2,
3, 4 or greater than 4. The set loss +

∏
t p(yt)

p(yτt )
termination

method consistently outperforms other models in all cases
expect for precision in the case of one triplet per example.
The F1 score of set loss +

∏
t p(yt)

p(yτt )
is relatively stable with

regard to number of triplets per example. As the number of
triplets per sentence increase, the precision of our methods
increases, and the recall decreases. It means that the ra-
tio of predicted triplets to the number of reference triplets
become smaller as the number of triplets increases.

4.3. Case study
Table 2 gives results for two sentences in two systems.
In the first example, the set loss system achieves a

higher score than the baseline loss. It achieved this by
correctly predicting the reference triplets. However, the
termination method terminates at time step 2, and discards
the third and fourth predictions, which are valid. Observe
that the baseline loss has mistaken Toronto as a country.

The second example has three reference triplets. The
baseline loss system performs better than the set loss sys-
tem: it terminates correctly in this case. The set loss sys-
tem failed at determining when to terminate. This corre-
sponds to the observation in the left graph of Figure 3,
where the recall of the set loss system is lower than pre-
cision because it did not make adequate predictions. How-

ever, this example shows the potential of the set loss sys-
tem: the relation capital is actually possible here. Also, the
relation nationality is actually supported by the sentence;
it was predicted in spite of the fact that it was not present
in the knowledge base.

5. Conclusion
In this paper, we focused on modelling the plausibility

of triplets, which is missing in previous triplet-based meth-
ods for joint extraction of entities and relations. We pro-
posed a loss function which takes into account all possible
triplets at one time step. Experiments showed that by mod-
elling the plausibility of triplets, we can not only improve
the performance but also give the model the flexibility to
tune for precision or recall. Experiments also showed that
our method is more stable with respect to the number of
triplets per sentence.
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