
Vector-to-Sequence Models for Sentence Analogies
Liyan Wang

Graduate School of Information, Production and Systems
Waseda University
Kitakyushu, Japan

wangliyan0905@toki.waseda.jp

Yves Lepage
Graduate School of Information, Production and Systems

Waseda University
Kitakyushu, Japan

yves.lepage@waseda.jp

Abstract—We solve sentence analogies by generating the solu-
tion rather than identifying the best candidate from a given set of
candidates, as usually done. We design a decoder to transform
sentence embedding vectors back into sequences of words. To
generate the vector representations of answer sentences, we build
a linear regression network which learns the mapping between
the distribution of known and expected vectors. We subsequently
leverage this pre-trained decoder to decode sentences from
regressed vectors. The results of experiments conducted on a set
of semantico-formal sentence analogies show that our proposed
solution performs better than a state-of-the-art baseline vector
offset method which solves analogies using embeddings.

Index Terms—sentence analogies, decoder, sentence embed-
dings.

I. INTRODUCTION

Analogy has played an important role in symbolic artificial
intelligence because of its potential to capture structural rela-
tions. It was also felt as a possible way of imitating human
cognition [1], [2], [3]. Specifically, given a pair of entities
(A, B) in a source domain and an entity C in a target domain,
the answer D is inferred by mapping relational features or
structural correspondences across the two domains, so as to
satisfy the analogical relations as much as possible. This
gives rise to an analogy, noted A : B :: C : D, like
the one in reservoir : water :: battery : electricity from
the domain of standard physics to that of electromagnetism.
Analogical reasoning has proved to be an effective problem-
solving method in many tasks, such as image generation [4]
or preference completion [5].

Due to its ability to reflect and capture linguistic features,
analogical reasoning has been used to complete some Natu-
ral Language Processing (NLP) tasks, like machine transla-
tion [6], [7], [8] or question answering [9] in recent years. In
NLP, the terms of an analogy are typically words, sentences,
or any other textual units. For instance,

male : king :: female : x ⇒ x = queen

(to tediously quote the over-repeated example from [10]) or

A coffee,
please! :

A strong
coffee. ::

May I
ask for
two cups
of tea?

: x ⇒ x =
Two cups
of strong
tea.

In the word analogy task [11], [12], [13], especially for se-
mantic or world knowledge categories, e.g., brother : sister ::

grandson : granddaughter or Athens : Greece ::
Oslo : Norway 1, the vector offset method is the method
of choice to solve analogical equations in word embedding
spaces where words are represented as dense vectors.2 Various
studies [14], [15] concluded that the distributed representations
of quadruples satisfying some linear relationships embed the
properties of analogy. Based on this findings, the potential of
analogy is shown by its use as a benchmark to evaluate the
quality of word embedding methods [16].

Compared with word analogies, analogies at the sentence
level are confronted with more difficult challenges because
of the structural compositionality of sentences and the higher
semantic complexity. Following the success of word vector
representations, sentence embeddings have received attention.
They embed sentences into vectors to encapsulate semantic re-
lations. A simple and effective way to represent variable-length
sentences is to perform arithmetic operations (like averaging,
summation, etc) on (sub)word vector representations [17],
[18]. Different from these parameter-free methods, some ap-
proaches take sentence encoding as a part of their models,
and train or fine-tune for specific objectives like contextual
sentence prediction [19], natural language inference [20] and
discourse marker prediction [21].

However, the lack of vector decoders limits research on
sentence analogies to identifying the answer from a known
set of candidates. It is also questionable whether simple linear
operations are suited for solving analogies between sentences.
Our contributions to remove these limitations are:
• We pre-train decoder networks with the ability to transfer

sentence vectors independently of embedding methods,
back into sequences of words.

• We introduce a network-based solution for sentence
analogies which frees us from choosing among a set of
candidates and which also performs better than the widely
used approach based on linear operations.

II. RELATED WORK

Sentence analogy is the task of deriving a sentence D
that satisfies the relations in a given analogical equation
A : B :: C : D, where A, B and C are known sentences, and

1from the Google analogy data set. http://download.tensorflow.org/data/
questions-words.txt

2https://aclweb.org/aclwiki/Analogy (State of the art)#Methods to
solve analogies

D is unknown. In comparison with word analogies, sentence
analogies cover more complicated cases due to the intrinsic
richness of sentences in lexical, syntactic and semantic varia-
tions and the differences in lengths. Intuitively, the probability
of finding analogies between sentences is much lesser than
between words. Early research like [22], [23] tackled this
problem formally by treating sentences as strings of words
or characters. They analyzed explicit literal relations without
taking the meaning into consideration. The commutations of
pieces in the sentences helped to generate solutions that meet
analogical relations with the given three other sentences.

With the use of distributed representations, the linear vector
offset method has yielded relatively high performance in
solving both syntactic and semantic analogies between words,
represented by fixed-size vectors [14]. Let us denote with v(x)
the embedding vector of a textual element x. The success
of this linear method can be attributed to the regularity of
vector offsets between entities in an analogy, mathematically
expressed as v(B)−v(A) ≈ v(D)−v(C). The solution of an
analogy is found by selecting the word with the highest cosine
similarity to v(B)− v(A) + v(C), from a given candidate set
Λ, as stated in Equation (1).

arg max
D∈Λ

cos (v(D), v(B)− v(A) + v(C)) (1)

The semantico-formal resolution of analogies between sen-
tences has been introduced in [24]. Based on edit traces3

between sentences, the analogical equation is decomposed into
a set of semantic sub-analogies between sets of words, which,
each, expect a single word as a solution. All optimum solutions
of the sub-analogies eventually construct the sentence solution
for the sentence analogy.

Guu et al. (2019) [25] trained a neural editor to obtain the
edit vector encoding transformations between two sentences,
and applied it on a sentence to generate a new sentence
conditioned on this edit vector. Following the notion that the
same relations jointly hold in two pairs of analogous items [1],
they apply the edit vector representing the analogical relation
in the sentence pair (A, B) on the sentence C to generate the
answer D. In experiments of one-word sentence analogies,
the ratios of which consist of two sentences with only one
word difference, the accurate answers appear among the top
ten outputs in about 55% of the cases. However, in most cases,
it fails to directly generate the exact answer.

In recent years, fixed-size vector representation has attracted
increased attention for the encoding of semantic and syntactic
regularities of variable-length sentences. The quality of various
sentence embedding methods capturing the linguistic proper-
ties of sentences have been investigated in [26]. On this basis,
it is natural to extend the application of the linear arithmetic
methods on sentence vectors, and identify the sentence with
the maximum cosine similarity from a candidate vector. Diallo
et al. (2019) [9] experimented on a sentence analogy data set
composed of question-answer pairs. To enhance the quality of

3A trace between two strings A and B is the representation of edit
operations for transforming string A into string B.

the answer selected from a set of candidates, they proposed
a novel sentence embedding method to encode the analogical
properties of quadruplets. Sentence vectors are taken as in-
termediate values of a Siamese network, trained to minimize
the difference between two analogous pairs in the embedding
space.

III. METHODOLOGY

With the lack of a decoding method for sentence embed-
dings, selecting analogy solutions based on sentence vectors is
limited to selecting the answer with the maximum cosine sim-
ilarity against the hypothetical vectors of candidate sentences.
To settle this issue, we introduce a decoder to reconstruct sen-
tences encoded by vectors in a specific sentence representation
space. Furthermore, we propose a neural network to predict
the vector representing a sentence which meets the analogical
constraints of an analogical equation. Subsequently, we use
the pre-trained decoder to transform vectors into sentences.

A. Decoder for Sentence Vectors

We generate sentences on the premise of having only a
fixed-size vector and no other information. For that, we train a
vector-to-sequence model. Our approach is inspired by training
a sequence-to-sequence (seq2seq) model [27] for monolingual
translation. That is, we assume an auto-encoder architecture
dedicated to reconstructing a sentence identical to the input
sentence. The bottleneck layer contains the sentence vector
generated by the conditional embedding model. The bottleneck
is equivalent to the context vector given by the last hidden state
of an RNN encoder in a seq2seq model. It represents the entire
sentence. To learn the mapping between the vectors and the
sentences in an embedding space, we fix the parameters of the
pre-trained sentence encoder in order to preserve the property
of the sentence embedding space. We focus on training a
unidirectional RNN which predicts each token of the sentence
from the given vector.

Our model is similar to the decoder part of RNN Encoder-
Decoder in [28]. Given a sequence S = (w1, ..., wN) of
length N including a start-of-sequence token and an end-
of-sequence token, the context vector c, which is the K-
dimensional embedding of sentence S, is passed into the
recurrent units as well as the softmax layer (classifier) at each
time-step t, so as to retain the embedding of the complete
sequence while updating the hidden state ht and generating
the next token wt+1. In [28], the sentence vector c contributes
to learning the hidden state and classifying the target word at
each time step.

We concatenate the input token’s embedding v(wt) and c
with the output ot of the RNN layer to predict the probabil-
ity distribution of the token wt+1 against the words in the
vocabulary set.

p(wt+1|wt, wt−1, ..., w1, c) = g(v(wt), c, ot) (2)

In Equation (2), g is the softmax function. We call our decoder
model ConRNN. Here, we use pre-trained vector models for
the computation of the representation of sentences and of

the expected tokens at every decoding step. We propose a
multi-loss ConRNN model (ML-ConRNN) for the propose of
restoring the correct order of words and a semantically similar
text as the input. The multi-loss is defined as the combination
of classification loss and regression loss. These two losses are
explained below.

1) Classification Loss: As in previous work on seq2seq
models, the goal is to make the predicted probability dis-
tribution close to the reference. We use a cross-entropy loss
function to perform multi-label text classification given the
sentence embedding c.

Lc = − 1

N

N∑
n=1

log p (wn|c) (3)

2) Regression Loss: This function deals with the similarity
between the output of the recurrent units and the embeddings
for the expected token at every time step. Mathematically, if
the texts are semantically similar, the vectors are close. We
expect that the output is very close to the embeddings of
the next input words. Therefore, we apply the mean-squared-
error (MSE) loss function to regress the last hidden states of
RNN cells onto the next input embeddings, so as to obtain
semantically meaningful words. This will hopefully preserve
the information with respect to the order in the sequence
through continuous regression.

Lr =
1

(N − 1)×K

N−1∑
n=1

K∑
k=1

(v(wn+1)k − onk)2 (4)

B. Resolution of Sentence Analogies

Our goal is to generate the solution (i.e., a sentence) of
an analogical equation between sentences. We can compute
the vectors of the known sentences A, B, and C, and we can
transform a vector back to a sentence using the pre-trained
decoder described above.

In this section, we introduce a neural network to learn the
mapping between a given triple of sentences and the correct
answer of the analogical equation in the embedding space,
so that to predict the vector of the solution to an analogical
equation. We then take advantage of our pre-trained decoder
to decode the solution vector into a sentence which constitutes
the solution of the analogical equation between sentences.

To predict the vector corresponding to the solution of
an analogical equation between sentences, we establish a
linear regression framework to learn the mapping between the
composition of three known sentences and the embeddings of
the expected solution. We experiment with three compositional
methods on the known vectors v(A), v(B), v(C):
• concatenation: v(A) · v(B) · v(C)
• summation: v(A) + v(B) + v(C)
• arithmetic analogy: v(B)− v(A) + v(C)

The number of neurons in the input and output layer
corresponds to the size of the compositional vector and the
sentence embedding, respectively. Since we want the generated
vectors to be as close as possible to the correct solution of the

TABLE I
THE STATISTICS OF DATA SET FOR TRAINING DECODERS

Data Number of
sentences words/sent. characters/sent.

Training 63,336 6.7 ± 1.6 28.5 ± 8.0
Validation 7,917 6.7 ± 1.6 28.4 ± 8.0
Testing 7,918 6.7 ± 1.6 28.5 ± 8.0
Total 79,171

TABLE II
THE STATISTICS OF DATA SET FOR TRAINING THE NETWORK WITH THE

POTENTIAL TO SOLVE SENTENCE ANALOGIES.

Data Number of
analogies sentences words/sent. characters/sent.

Training 3,364 3,185 7.1 ± 1.2 27.0 ± 5.7
Validation 1,121 1,769 7.1 ± 1.1 26.6 ± 5.6
Testing 1,121 1,667 7.0 ± 1.1 26.3 ± 5.6
Total 5,607

sentence analogy in the embedding space, we use the MSE
loss function of train the regression network. The function is
given by Equation (5).

LMSE =
1

K

K∑
k=1

(vk − v(D)k)2 (5)

In Equation (5), v and v(D) are the predicted vectors and
the vectors of the labeled sentence respectively, and K is the
dimension of the sentence embeddings.

IV. EXPERIMENTS

A. Data

We train the decoder on English sentences from the English-
French parallel corpus Tatoeba4. Table I provides some statis-
tics. The data set consists of 79,171 different sentences with
an average length of 7 words (29 in characters). The words
are 6 characters long in average. The length of the longest
sentence is 10 words. We extract all the word types from the
training set to build a vocabulary of 10,381 words.

In order to evaluate our proposal for the resolution of
sentence analogies, we use the semantico-formal analogy set
released in [24]5. It comprises 5,607 labeled analogical equa-
tions between sentences extracted from the Tatoeba corpus,
which include formal and semantic analogies between chunks.
We split into 80%, 10%, 10% for training, validation and
testing (see Table II).

B. Training Details

Long short term memory (LSTM) are known to perform
better than gated recurrent unit (GRU). We build our RNN
models using LSTMs. During the training process, we use a
batch size of 128 to train our model and set the learning rate
as 0.001 to tune the parameters in Adam optimizer. To avoid

4https://tatoeba.org/
5http://lepage-lab.ips.waseda.ac.jp/en/projects/kakenhi-kiban-c-18k11447/

See tab: Experimental Results

overfitting, we apply early stopping with a patience of 50.
If the performance of the validation data set stops improving
after waiting for an additional 50 epochs, we automatically
interrupt it to obtain an optimal model.

When training the decoder, we use a pre-trained embedding
model to embed sentences. The input size is the same as the
vector size (768 dimensions for SBERT, and 300 dimensions
for the composition of fastText vectors). At each decoding
step, we apply teacher forcing, i.e., the network is explicitly
taught by the reference with a random probability of 75%.

The network for solving sentence analogies comprises four
linear layers, each hidden layer has 512 neurons. At each layer,
we use the Leaky Rectified Linear Unit (LeakyReLU) as the
activation function.

C. Evaluation Metrics

We assess the inferred results on several evaluation metrics,
that are commonly used in text generation: BLEU score [29],
METEOR Universal [30], and accuracy. The accuracy is
defined as the number of predicted sentences which exactly
match their reference divided by the total number of samples
in the test set. It is measured by Formula (6).

Accuracy =
Number of correct predictions
Number of samples in test set

× 100 (6)

We evaluate use Jaccard similarity and Levenshtein distance
between sentences in words and characters, in order to find
how different two sentences are literally. To compute the
Jaccard similarity, which is irrespective of the order of tokens,
the sentence is regarded as a multi-set of words. If SA and SB

are the notation for the multi-sets of A and B, respectively,
the Jaccard similarity coefficient between the two multi-sets
is computed like6:

J(SA, SB) =
|SA ∩ SB |
|SA ∪ SB |

(7)

D. Performance of the Decoder

We evaluate the decoder models with the Nearest Neighbour
method7: we retrieve the closest different sentence from the
test set. To explore the quality of decoders against sen-
tence embeddings, we perform experiments on two typical
methods for representing variable-length sentences into fixed-
size vectors: summation over word vectors and pre-trained
sentence embedding model. We choose fastText8 and SBERT9

as our pre-trained models to obtain encoded vectors with
dimensionality of 300 and 768 respectively. The results of
decoding sentence vectors are reported in Table III10.

6Given the multisets SA and SB , SA ∩ SB is the smallest multi-set that
contains word(piece)s with the minimal number of occurrences in SA and
SB . SA ∪SB is the largest multi-set with all word(piece)s with the maximal
number of occurrences in SA and SB .

7In order to find the nearest neighbour to the sentence S in the em-
bedding space, from the candidate set {Ci}, the result should satisfy:
argmaxCi 6=S cos (v (Ci) , v (S)).

8https://fasttext.cc/docs/en/crawl-vectors.html
9https://github.com/UKPLab/sentence-transformers
10We performed all experiments with GRU too and confirmed the advantage

of multi-loss. Not surprisingly, the performance with GRU falls behind that
of LSTM, without being statistically different.

The results show that RNN-based decoders perform signif-
icantly better than retrieving the nearest neighbour sentence
from a pre-defined set. The BLEU score is multiplied by at
least three. The worse performance of the closest sentences
indicates that sentences with a similar semantic meaning in the
vector space differ greatly in form. In other words, it is difficult
to find a sentence similar, in form and meaning, to candidates
composed of test sentences other than the references. For the
offset method followed by nearest neighbour retrieval to be
efficient, a necessary condition is that each analogical question
be given a reasonable set of candidate sentences.

As shown in Table III, the ConRNN model with multi-
loss outperforms all models in the two embedding spaces.
Compared with the basic RNN trained with a single loss func-
tion, the accuracy of ML ConRNN increases by more than
10%. By remembering sentence vectors through the addition
of the regression loss, our model is capable of returning a
semantic representation of the original sentences. In terms of
accuracy, however, valid results which differ in form but not
in meaning with the references are not considered accurate by
the metrics we use. In addition, the limitation in vocabulary
may negatively impact accuracy, which prevents the model to
decode into unknown words.

We inspected the properties and the dimensions of the
sentence embeddings used. The first group (summation over
fastText vectors) achieves better results, although the sentence
representations based on word vectors fail to encode the order
of words. Because SBERT is trained with the goal of being
able to compare embeddings with cosine similarity, using
SBERT, the closest sentence should possess the highest se-
mantic similarity. We list some examples of nearest neighbours
against two embedding methods in Table IV. Although the
values demonstrate that summation over word vectors is better,
from the human point of view, some results obtained using
SBERT’s nearest sentences exhibit a closer meaning.

E. Results for Sentence Analogies

Our aim is to generate the sentences which are solutions
of analogical equations by decoding them from candidate
vectors representing the unknown in the equations. We first
use the selected decoder to transform the embedding vectors
of reference sentences D in the test analogy set (see Table V)
and evaluate the performance on the analogical corpus. The
decoder achieves high performance on the test set: 98% of
the sentence vectors are perfectly decoded; on average, the
generated sentences differ from the reference sentences by a
fifth of a character; the Jaccard similarity is approximately 1.

Table VI presents the results obtained with different com-
positions of the embeddings of the known three sentences. We
also report the performance of the vector offset method (see
Equation (1)) which is a common way of solving analogies
using embedding vectors. More specifically, we apply the
arithmetic vector operation on the known vectors in the analo-
gies, and then decode the resulting vector using the identical
pre-trained decoder.

TABLE III
PERFORMANCE OF VARIOUS DECODING METHODS WITH DIFFERENT ARCHITECTURES TRAINED ON DIFFERENT SENTENCE EMBEDDING METHODS. THE

FIRST GROUP CORRESPONDS TO THE SUMMATION OVER FASTTEXT VECTORS. THE SECOND GROUP IS THE EMBEDDINGS DERIVED FROM THE
PRE-TRAINED SBERT MODEL “BERT-BASE-NLI-MEAN-TOKENS”. FOR RNN-BASED MODELS, WE COMPARE TWO TYPES OF RNN, RECURRENT UNITS

AND TWO DIFFERENT LOSS FUNCTIONS (SL FOR THE SINGLE LOSS (CLASSIFICATION LOSS), ML FOR THE MULTI-LOSS).

Decoding Method Edit Distance Jaccard Similarity Accuracy (%) BLEU METEORNetwork Loss in words in characters in words in characters
Summation over fastText vectors (300 dim.)
Nearest Neighbour 5.8 ± 2.8 20.5 ± 9.7 0.45 ± 0.15 0.60 ± 0.11 0.00 0.18 ± 0.01 0.25

basic RNN SL 1.9 ± 2.5 7.6 ± 10.1 0.86 ± 0.19 0.89 ± 0.15 51.52 0.67 ± 0.01 0.48
ML 1.4 ± 2.3 6.0 ± 9.6 0.92 ± 0.15 0.94 ± 0.12 62.38 0.74 ± 0.01 0.53

ConRNN SL 1.6 ± 2.3 6.5 ± 9.3 0.89 ± 0.16 0.91 ± 0.14 56.57 0.72 ± 0.01 0.51
ML 1.3 ± 2.0 5.5 ± 8.8 0.93 ± 0.14 0.94 ± 0.12 62.84 0.76 ± 0.01 0.53

SBERT (768 dim.)
Nearest Neighbour 7.6 ± 3.1 23.7 ± 10.1 0.30 ± 0.17 0.54 ± 0.12 0.00 0.12 ± 0.01 0.20

basic RNN SL 3.5 ± 3.2 11.9 ± 11.1 0.67 ± 0.26 0.77 ± 0.17 25.92 0.45 ± 0.01 0.38
ML 3.2 ± 3.2 11.0 ± 11.1 0.70 ± 0.25 0.79 ± 0.17 30.00 0.50 ± 0.01 0.40

ConRNN SL 3.2 ± 3.0 11.0 ± 10.8 0.70 ± 0.25 0.79 ± 0.17 29.14 0.50 ± 0.01 0.40
ML 3.1 ± 3.0 11.0 ± 10.9 0.70 ± 0.25 0.79 ± 0.17 30.29 0.50 ± 0.01 0.41

TABLE IV
EXAMPLE RESULTS FOR NEAREST NEIGHBOUR WITH TWO DIFFERENT SENTENCE EMBEDDING METHODS.

Sentence Nearest neighbour & BLEU Consistency with
human judgmentSummation over fastText vectors SBERT

i never even considered that . i ’ll never be that famous . 0.01 i never said that i wanted that . 0.16 Yes
it can be difficult . it could be anybody . 0.14 it ’s kind of complicated . 0.01 No
we ’re very grateful . we ’re very busy . 0.43 i really appreciate this . 0.11 No

TABLE V
RESULTS FOR DECODING THE VECTORS OF THE FOURTH TERM IN THE SENTENCE ANALOGIES USING THE PRE-TRAINED DECODER MODEL WITH THE

BEST PERFORMANCE FROM THE FIRST GROUP (SUMMATION OVER FASTTEXT VECTORS) IN TABLE III.

Decoder Model Edit Distance Jaccard Similarity Accuracy (%) BLEU METEORin words in characters in words in characters
ML-ConRNN 0.1 ± 0.4 0.2 ± 1.7 1.00 ± 0.03 1.00 ± 0.02 97.59 0.99 ± 0.01 0.78

The vector offset method is largely used in word analogies.
In our task, however, the arithmetic method faces the challenge
of more complex relations encapsulated in sentences. The
predicted sentences differ from the reference by one word in
average. Recall that the upper limit of accuracy of the pre-
trained decoder is around 98%, while, the accuracy of the
vector offset method is only 42%, i.e., less than half of the
upper limit. This indicates that the vector offsets are not kept
within sentence embeddings.

The neural-based resolution method outperforms all models,
except the model trained from summation of vectors. The
vector size may explain this phenomenon. The results of
concatenation, where three times larger vectors are used,
show that larger representations encapsulate more information.
However, we note that the performance of arithmetic analogy
is superior to the other two methods even with the same size as
summation. A BLEU score of 0.91 is obtained with a less than
half a word. Table VII shows some results in the resolution of
sentence analogies. Analogies where the edit distance between
any two of the known sentences is less than half of their
lengths, are more prone to be solved by our method. Also,
analogies that include unknown words are difficult to solve.

V. CONCLUSION

We introduced decoder models for decoding sentence vec-
tors into sentences. We showed that decoders trained for multi-
loss objectives perform better. Based on this result, we pro-
posed a linear architecture to learn the mapping between the
vectors of the sentences present in an analogical equation and
the vector of the sentence solution of this equation. We used
the pre-trained decoder models to transform a solution vector
into a solution sentence. By generating the answer sentence
for a sentence analogy problem, we avoid the requirement of
choosing among a set of candidates given in advance.

As the examples presented in Table IV show, our metrics
measure well the formal features between sentences, but do not
reflect so well the semantic similarity. To address this problem,
the use of the metric recently proposed in [31] could be added.
As for the decoder model, the introduction of conditional re-
ward may lead to better generation of semantically meaningful
tokens in the decoding steps.

ACKNOWLEDGMENT

This work was supported by grant number 18K11447 from
the Japanese Society for the Promotion of Science (JSPS) enti-

TABLE VI
PERFORMANCE OF VARIOUS RESOLUTION METHODS TRAINED USING DIFFERENT COMBINATIONS OF TRIPLES OF VECTORS. FOR THE VECTOR OFFSET

METHOD, WE APPLY THE SAME PRE-TRAINED MODEL ON DECODING THE OUTPUT VECTORS.

Resolution Edit Distance Jaccard Similarity Accuracy (%) BLEU METEORComposition in words in char. in words in characters
Vector offset method 1.3 ± 1.2 5.0 ± 5.2 0.84 ± 0.14 0.85 ± 0.15 41.90 0.75 ± 0.01 0.50

Linear regression
concatenation 0.7 ± 1.4 2.5 ± 5.1 0.92 ± 0.15 0.93 ± 0.13 74.24 0.87 ± 0.02 0.59
summation 1.6 ± 2.2 5.2 ± 6.9 0.82 ± 0.22 0.85 ± 0.18 52.41 0.72 ± 0.02 0.49
arithmetic nlg. 0.4 ± 1.1 1.6 ± 4.3 0.95 ± 0.12 0.96 ± 0.10 83.24 0.91 ± 0.01 0.64

TABLE VII
EXAMPLES OF THE RESULTS OF SENTENCE ANALOGIES AGAINST DIFFERENT EDIT DISTANCES.

Sentence Analogy Prediction Edit
Dist. BLEU

i ’d like to be your
friend . :

i just want to be your
friend . :: i ’d like to be alone . : i just want to be alone . i just want to be alone . 0 1.00

you were watching ,
were not you ? :

you were pretending ,
were not you ? ::

you were scared ,
were not you ? :

you were afraid , were
not you ?

you were terrified ,
were not you ? 2 0.60

i ’m still a little hun-
gry . : i ’m a little sick . :: i ’m still hungry . : i am tired . i ’m sick . 4 0.19

her novel has been
translated into
japanese .

:
his novel has been
translated into
japanese .

::
her novel was trans-
lated into japanese . :

his novel was trans-
lated into japanese .

his family was not
quickly . 7 0.01

there is an urgent
need for a new system
.

:
there is an urgent
need for blood dona-
tions .

::
there is an urgent
need for experienced
pilots .

:
there is an urgent
need for volunteers .

no need need me in-
volved an urgent . 10 0.13

tled “Self-explainable and fast-to-train example-based machine
translation using neural networks”.

REFERENCES

[1] D. Gentner, “Structure-mapping: A theoretical framework for analogy,”
Cognitive science, vol. 7, no. 2, pp. 155–170, 1983.

[2] D. Gentner and K. D. Forbus, “Computational models of analogy,” Wiley
interdisciplinary reviews: cog. sci., vol. 2, no. 3, pp. 266–276, 2011.

[3] D. G. K. J. H. Boicho and N. Kokinov, The analogical mind: Perspec-
tives from cognitive science. MIT press, 2001.

[4] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin,
“Image analogies,” in CGIT, 2001, pp. 327–340.

[5] M. Pirlot, H. Prade, and G. Richard, “Completing preferences by means
of analogical proportions,” in MDAI, 2016, pp. 135–147.

[6] Y. Lepage and E. Denoual, “The ‘purest’ EBMT system ever built:
no variables, no templates, no training, examples, just examples, only
examples,” in MT Summit X, 2005, pp. 81–90.

[7] P. Langlais, F. Yvon, and P. Zweigenbaum, “Analogical translation of
medical words in diff. languages,” in LNAI 5221, 2008, pp. 284–295.

[8] H. Somers, S. Dandapat, and S. K. Naskar, “A review of EBMT using
proportional analogies,” in EBMT III, 2009, pp. 53–60.

[9] A. Diallo, M. Zopf, and J. Fürnkranz, “Learning analogy-preserving
sent. embeddings for answer selection,” in CoNLL, 2019, pp. 910–919.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in CoRR, 2013. [Online].
Available: https://arxiv.org/pdf/1301.3781.pdf

[12] A. Drozd, A. Gladkova, and S. Matsuoka, “Word embeddings, analogies,
and machine learning: Beyond king - man + woman = queen,” in
COLING, 2016, pp. 3519–3530.

[13] A. Rogers, A. Drozd, and B. Li, “The (too many) problems of analogical
reasoning with word vectors,” in *SEM, 2017, pp. 135–148.

[14] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in contin-
uous space word representations,” in NAACL, 2013, pp. 746–751.

[15] K. Ethayarajh, D. Duvenaud, and G. Hirst, “Towards understanding
linear word analogies,” in ACL, 2019, pp. 3253–3262.

[16] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims, “Evaluation
methods for unsupervised word embeddings,” in EMNLP, 2015, pp.
298–307.

[17] J. Mitchell and M. Lapata, “Composition in distributional models of
semantics,” Coginitive Sciene, vol. 34, pp. 1388–1429, 2010.

[18] A. Rogers, A. Drozd, and A. Rumshinsky, “Distributional compositional
semantics in the age of word embeddings: tasks, resources and method-
ology,” in LREC, 2018.

[19] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Skip-thought vectors,” in Advances in neural
information processing systems, 2015, pp. 3294–3302.

[20] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from natural
language inference data,” in EMNLP, 2017, pp. 670–680.

[21] A. Nie, E. Bennett, and N. Goodman, “DisSent: Learning sentence
representations from explicit discourse relations,” in ACL, 2019, pp.
4497–4510.

[22] M. Nagao, “A framework of a mechanical translation between japanese
and english by analogy principle,” Artificial and human intelligence, pp.
351–354, 1984.

[23] Y. Lepage and G. Peralta, “Using paradigm tables to generate new
utterances similar to those existing in linguistic resources,” in LREC’04,
2004.

[24] Y. Lepage, “Semantico-formal resolution of analogies between sen-
tences,” in LTC, 2019, pp. 57–61.

[25] K. Guu, T. B. Hashimoto, Y. Oren, and P. Liang, “Generating sentences
by editing prototypes,” TACL, vol. 6, pp. 437–450, 2018.

[26] K. Krasnowska-Kieraś and A. Wróblewska, “Empirical linguistic study
of sentence embeddings,” in ACL, 2019, pp. 5729–5739.

[27] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014, pp. 3104–3112.

[28] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder–decoder for statistical machine translation,” in EMNLP,
2014, pp. 1724–1734.

[29] M. Post, “A call for clarity in reporting BLEU scores,” in WMT, 2018,
pp. 186–191.

[30] M. Denkowski and A. Lavie, “Meteor universal: Language specific
translation evaluation for any target language,” in EACL, 2014.

[31] T. Sellam, D. Das, and A. Parikh, “BLEURT: Learning robust metrics
for text generation,” in ACL, 2020, pp. 7881–7892.

