
String Transformations Preserving Analogies
Yves Lepage

Graduate School of Information, Production and Systems
Waseda University
Kitakyushu, Japan

yves.lepage@waseda.jp

Abstract—This paper examines the following problem: which
transformations on strings preserve analogy? For instance, con-
sider the analogy putra : putera :: putri : puteri.1 If we sys-
tematically reduplicate the characters in the strings (ppuuttrraa
: ppuutteerraa :: ppuuttrrii : ppuutteerrii), or systematically
insert a space between each character in the strings (p u t r a
: p u t e r a :: p u t r i : p u t e r i), the analogies between
the transformed strings still hold. The analogies considered are
formal analogies of commutation between strings of characters,
the definition of which makes use of LCS distance. Experiments
on more than 16 million formal linguistic examples confirm
several theoretical results, invalidate some hypotheses. and allow
to test interesting conjectures.

Index Terms—Strings, Analogy, Distance, String transforma-
tions

I. INTRODUCTION

Formal analogical equations between strings of characters
are puzzles of the type: aaabbbccc : aabbcc :: aabbcc : x
(solution: abc) or kena : mengenakan :: keras : x (solution:
mengeraskan).2 Formal analogical equations differ from se-
mantic analogies like: pria : wanita :: raja : x (solution: ratu)3

or encyclopaedic analogies like: Indonesia : Jakarta :: Malaysia
: x (solution: Kuala Lumpur). Data sets like Google set [12]
or BATS v3.0 [5] have been created recently to test word
embeddings [12], [13] on semantic or encyclopaedic analogies.

Algorithms to solve formal analogical equations have been
proposed much earlier as in [9] or [8]. They are still under
study [14]. To test them, large or very large test sets of formal
analogies have also been released [14], [1], [6].

Recently, capitalising on the progress in deep learning, some
attempts at solving formal analogical equations using neural
networks have been made [7], [19]. Analogies between strings
of characters are inherently variable in lengths but neural
methods, especially fully connected networks, require fixed
length input.

This poses the problem of casting a variable-length ana-
logical puzzle into an equivalent puzzle where all strings,
including the solution, have the same length. For instance,
the puzzle aaabbbccc : aabbcc :: aabbcc : x contains strings
of lengths 9, 6 and 6 respectively. It is obvious that a
first transformation into a fixed-length puzzle aaabbbccc :
aaabbbccc :: aaabbbccc : x′ allows to build solution x′ =

1Indonesian: prince/son, princess/daughter in two possible spellings.
2Indonesian: close, bound : to bind :: stiff, firm : to stiffen.
3Indonesian: man : woman :: king : queen.

aaabbbccc, of same length. A back-transformation yields the
solution x = abc.

For the ultimate purpose of casting analogical equations
into fixed-length puzzles so as to find the solutions of
variable-length formal analogical equations, this paper exam-
ines which string transformations preserve analogies between
strings, more precisely formal analogies of commutation (see
Sect. IV-C) which are the most common in language data,
and for which potential applications exist in transliteration,
morphology and even machine translation.

II. PREREQUISITES ON STRINGS AND TRANSFORMATIONS

Let A be a set of characters, i.e., an alphabet. The set of
all strings built on A is classically denoted as A∗. It contains
the empty string, noted with ε.

Table I gives the list of notations for strings used in this
paper. In addition to standard operations like concatenation,
mirroring (abcR = cba) or repetition of strings (abc3 =
abcabcabc), we introduce two original operations:
• systematic reduplication of each character a certain num-

ber of times in a string (3abc = aaabbbccc);
• systematic insertion of a string into another string after

each character (abc ↓ xy = axybxycxy).

III. PREREQUISITES ON LCS EDIT DISTANCE

A. Definition

A longest common subsequence (LCS) of two strings
s1 and s2 is a longest possible string of characters which
appear in the same order in the two strings. For instance,
LCS(xaybzc, efgahibjklmopcqr) = abc. As illustrated here,
an LCS can be made of discontiguous characters. There may
exist several LCS for a given pair of strings. For instance aba,
aca, acb, bab, bac, cab, etc., are all LCS of abcabc and cbacba;
they all have the same length by definition.

The length of the LCS of two strings is a measure of their
similarity. The smaller, the less similar the strings.

The LCS distance between two strings s1 and s2 is a
distance defined from the LCS similarity. The larger, the less
similar the strings. It can be directly defined as:

d(s1, s2) = |s1|+ |s2| − 2× |LCS(s1, s2)| (1)

It is a true mathematical distance as it takes non-negative
values and verifies the three following fundamental axioms for
distances. For any strings s1, s2 and s3 in A∗,

TABLE I
NOTATIONS ON STRINGS USED IN THIS PAPER WITH EXAMPLES (GENERAL CASES FIRST, PARTICULAR CASES AFTER)

Definition Notation Examples

Length of a string |s|
s = mississippi |mississippi| = 11

s = aaaa |aaaa| = 4
s = ε |ε| = 0

Number of occurrences of char-
acter in a string

|s|c
s = mississippi c = s |mississippi|s = 4

s = aaaa c = a |aaaa|a = 4
s = ε ∀c ∈ A |ε|c = 0

Set of characters in a string s

s = mississippi mississippi = {i, m , p, s}

s = aaaa aaaa = {a}
s = ε ε = ∅

Concatenation of strings s1.s2

s1 = abc s2 = defgh s1.s2 = abcdefgh

s1 = ε s2 = ε ε.ε = ε
s1 = ε ∀s2 ∈ A∗ ε.s2 = s2
∀s1 ∈ A∗ s2 = ε s1.ε = s1

Mirror of a string sR
s = abc abcR = cba

s = ε sR = ε
s = aabbaa sR = aabbaa = s

Repetition of a string
a certain number of times

sλ

λ = 3 s1 = abc abc3 = abcabcabc

∀λ ∈ N s1 = ε ελ = ε
λ = 0 ∀s ∈ A∗ s0 = ε
λ = 1 ∀s ∈ A∗ s1 = s

Systematic reduplication
of each character in a string
a certain number of times

λs

λ = 3 s = abc 3abc = aaabbbccc

∀λ ∈ N s = ε λε = ε
λ = 0 ∀s ∈ A∗ 0s = ε
λ = 1 ∀s ∈ A∗ 1s = s

Systematic insertion
of a string into another string
after each character

s1 ↓ s2

s1 = abc s2 = xy abc ↓ xy = axybxycxy

s1 = ε s2 = ε ε ↓ ε = ε
s1 = ε ∀s2 ∈ A∗ ε ↓ s2 = ε
∀s1 ∈ A∗ s2 = ε s1 ↓ ε = s1

• separation: d(s1, s2) = 0⇔ s1 = s2
• symmetry: d(s1, s2) = d(s2, s1)
• triangle inequality: d(s1, s2) ≤ d(s1, s3) + d(s3, s2)

The LCS distance is also an edit distance, i.e., it is the
smallest number of edit operations needed to transform one
string into the other one. The LCS distance considers only
two kinds of edit operations:
• insertion: ab→ abc;
• deletion: abc→ ab.

The LCS distance is different from the well-know Lev-
enshtein distance [11] in which an additional kind of edit
operation, substitution (abc → dbc), is used. When using the

notion of cost of an edit operation, the LCS distance can be
seen as a particular case where any substitution has a cost of
two: the cost of one deletion plus the cost of one insertion.

The standard algorithm to compute edit distances is the
dynamic programming algorithm given in [17] which uses an
array representation of the problem. The time complexity is
O(|s1| × |s2|) in the worst case, and in the best case. The
complexity in the worst case seems difficult to beat and,
according to [4], reducing it significantly would even be
equivalent to prove that P = NP . There exist algorithms
which improve speed in favorable cases for the LCS distance,
indirectly [2] or directly [18], i.e., with or without computing
the length of an LCS.

TABLE II
PROPERTIES OF LCS DISTANCE WITH RESPECT TO SOME OPERATIONS ON STRINGS

Operators Property / Counter-example Validity

Concatenation ∀(s1, s2, s3) ∈ (A∗)3 d(s1.s3, s2.s3) = d(s1, s2) Always true
d(s3.s1, s3.s2) = d(s1, s2) Always true

Mirror ∀(s1, s2) ∈ (A∗)2 d(sR1 , s
R
2) = d(s1, s2) Always true

Repetition ∀λ ∈ N, ∀(s1, s2) ∈ (A∗)2 d(sλ1 , s
λ
2) = λ× d(s1, s2) Not true in general

λ = 2, s1 = ab, s2 = ba d(abab, baba) = 2 6= 2× 2

Systematic Reduplication ∀(s1, s2) ∈ (A∗)2 d(λs1, λs2) = λ× d(s1, s2) Always true

Systematic Insertion ∀(s1, s2, s3) ∈ (A∗)3 d(s1 ↓ s3, s2 ↓ s3) = (|s3|+ 1)× d(s1, s2) Not true in general
s1 = ab, s2 = ba, s3 = ab d(aabbab, babaab) = 4 6= 3× d(ab, ba) = 3× 2

∀(s1, s2) ∈ (A∗)2,∀c ∈ A \ s1.s2 d(s1 ↓ c, s2 ↓ c) = 2× d(s1, s2) Not true in general
s1 = ab, s2 = dbd, c = x d(ab ↓ c = axbx, dbd ↓ c = dxbxdx) = 4 6= d(ab, dbd) = 3

B. Transformations Preserving the LCS Distance

Table II lists a number of remarkable properties verified
by the distance when applied to strings transformed by the
operations introduced in Sect. III. It also includes some
deceptive formulae and provides counter-examples for them.

To summarise the table, concatenation by the same string
and mirroring preserve the LCS distance. Systematic redupli-
cation behaves naturally in that it preserves the LCS distance
up to a multiplicative factor, the reduplication factor. Succint
proofs are given in Appendix A.

It is not a surprise that repetition does not preserve the LCS
distance, even up to the multiplicative factor of the number of
repetitions. Systematic insertion does not either behave well,
even in the particular case where the inserted string reduces
to one character which does not appear in any of the strings.

IV. PREREQUISITES ON ANALOGY

A. Definition

After having introduced the notions of strings, LCS dis-
tance, transformations on strings and their behaviour relative to
LCS distance, we now turn to the core of our topic: analogies
between strings. An analogy is defined in all generality as

“a conformity of ratios between objects of the
same type.” [10]

A ratio is a quantitative measure for the comparison of
two objects. Its symbol is a colon (:). A conformity is a
resemblance relation [15], here between two ratios; it verifies
reflexivity and symmetry, but not necessarily transitivity. Its
symbol is a double colon (::). Ratio and conformity are the
two articulative notions in analogy.

The above notations have a long tradition. With them,
classically, an analogy is written A : B :: C : D and reads
“A is to B as C is to D.”

There are also two constitutive notions in an analogy,
namely contiguity and similarity.

Table III gives a set of axioms for analogies which sticks
to the general definition of analogy given above. Axioms (I),

(II) and (III) state that inversing conformity, ratios or objects
preserves the analogy. Axioms (III) and (IV) concern the two
main constitutive notions of analogy: contiguity and similarity.
The last axiom, Axiom (V), has long been identified as being
proper to analogy [3]; the tradition calls it exchange of the
means, because B and C are called the means; A and D are
called the extremes.

B. Types of Analogies on Strings

It is possible to distinguish four types of analogies on
strings. By strings, for our applications in natural language
processing, we mean words or sentences. The four types are:
• analogies of repetition. In language, they are classically

illustrated by marked plurals in Indonesian or Malay:
rumah : rumah-rumah :: kota : kota-kota;4

• analogies of reduplications. In morphology, reduplication
of radical consonants are attested in Greek or Latin
conjugation: do : dedi :: cado : cecidi.5 In syntax, this
is illustrated with comparative forms in Japanese: taka-i
: taka-i hodo taka-kereba. . . :: naga-i : naga-i hodo naga-
kereba. . . ;6

• analogies of commutation. The simplest case, in reach
of regular languages, is simple prefixing or suffixing: do
: doing :: call : calling. Systematic parallel infixing as
attested in Semitic languages makes the problem context-
sensitive: kataba : kātib :: sakana : sākin;7

• analogies of mirroring. They are not attested in natural
languages. They just consist in mirroring the strings: abc
: cba :: defgh : hgfed.

More general analogies may merge several of the above
types at the same time. For instance, xyabc : cba :: xydefgh
: hgfed conflates an analogy of commutation with an analogy
of mirroring. Some analogies belong to several types at the

4Indonesian or Malay: house : houses :: town : towns.
5Latin: I do : I did :: I fall : I fell.
6Japanese: high : the higher the. . . :: long : the longer the. . .
7Arabic: he wrote : writer :: he lived (in . . .) : inhabitant.

TABLE III
AXIOMS FOR ANALOGIES OF COMMUTATION BETWEEN STRINGS OF CHARACTERS

Number Name of Axiom Property

(O) Reflexivity of conformity A : B :: A : B is always true.

(I) Inversion of conformity A : B :: C : D ⇒ C : D :: A : B

(II) Inversion of ratios A : B :: C : D ⇒ B : A :: D : C

(III) Inversion of objects (⇐ contiguity) A : B :: C : D ⇒ A−1 : B−1 :: C−1 : D−1

(IV) Distribution in objects (⇐ similarity) A : B :: C : D ⇒
any feature in A must be
present in either B or C
or both.

(V) Exchange of the means A : B :: C : D ⇒ A : C :: B : D

same time. For instance aa : aa :: aaa : aaa is an analogy of
commutation as well as an analogy of mirroring and can be
considered an analogy of reduplication.

We consider only analogies of commutation in this paper.
This is because analogies of commutation are the most com-
mon type of analogy in language data, especially between
short sentences. They exemplify patterns as in: My head hurts.
: My head hurts badly :: His chest hurts. : His chest hurts
badly. which are abundant in data sets like the BTEC [16] or
the Tatoeba corpus8.

C. Characterisation of Analogies of Commmutation
We use the characterisation of analogies between strings

of characters from [10]. Basically, this characterisation states
that the ratio between two strings A and B is composed of
their LCS distance, d(A,B), and all the differences between
the occurrences of all their characters, |A|c − |B|c, for all
c in A. The conformity of two ratios is established by the
equality of each of these components. Writing the above with
mathematical symbols gives Eq. (2) below.

∀(A,B,C,D) ∈ (A∗)4,
A : B :: C : D ⇔ d(A,B) = d(C,D)

d(A,C) = d(B,D)
|A|c − |B|c = |C|c − |D|c, ∀c ∈ A

(2)

It should be noted that the constraint on the number of
characters trivially implies that the sum of the lengths of the
extremes is equal to the sum of the lengths of the means.

|A|+ |D| = |B|+ |C| (3)

This result can also be demonstrated from the two constraints
on LCS distance.

V. TRANSFORMATIONS ON STRINGS PRESERVING
ANALOGY

We are interested in determining which transformations t
are such that:

A : B :: C : D ⇒ t(A) : t(B) :: t(C) : t(D) (4)

8https://tatoeba.org/

We will examine three classes of cases. The first class is for
the cases where we can provide proofs that the transformation
preserves analogy. This is the object of Sect. Theorems below.
The second class is for the cases where examples can be
exhibited which show that the transformation does not preserve
analogy in general. This is the object of Sect. Experimental
Refutations below. The third class is for the cases where
experimental evidence leads to think that a transformation
should preserve analogy, but no formal proof has yet been
provided. This is the object of Sect. Conjectures below.

A. Theorems

We start with theorems which can be easily established.
They are given in Appendix B. They are summarised in the
following way:

Prop. (4) holds for the following transformations:
• Max-length casting by prefixing or suffixing with a char-

acter outside of the set of characters appearing in the
given strings;

• Mirroring;
• Systematic reduplication;
Max-length casting is not a transformation of the same kind

as the other ones as the knowledge of the other strings in the
analogy is necessary to parameterise it. However, we give it
first as it is related to, but is not the same as, concatenation
of strings by a common prefix (or suffix).

B. Experimental Refutations

We now turn to experimental refutations. We use the data
released in [6]9. It consists of 16,350,683 different analogies
in ten different languages: Arabic, Finnish, Georgian, German,
Hungarian, Maltese, Navajo, Russian, Spanish, Turkish.

The first hypothesis which we refute relates to repetition.
It was shown in Sect. III-B that repetition does not preserve
LCS distance. Hence, there is no surprise in experimentally
invalidating the fact that an analogy between strings repeated
the same number of times would follow from an analogy
between these strings. However, on the very large data set

9http://lepage-lab.ips.waseda.ac.jp/, search for: ‘SIGMORPHON data set’

https://tatoeba.org/
http://lepage-lab.ips.waseda.ac.jp/

TABLE IV
TRANSFORMATIONS AND THEIR SUCCESS RATE IN PRESERVING ANALOGIES ON A DATA SET OF 16 MILLION DIFFERENT ANALOGIES IN 10 DIFFERENT

LANGUAGES. TOP ROWS: CONFIRMATION OF THEOREMS, MIDDLE ROWS: CONJECTURES, BOTTOM ROWS: REFUTATIONS OF HYPOTHESES

Transformation Success
Name Parameter Analogy rate (%)

Max-length casting c ∈ A \A.B.C.D, cm−|A|.A : cm−|B|.B :: cm−|C|.C : cm−|D|.D 100
m = max(|A|, |B|, |C|, |D|) A.cm−|A| : B.cm−|B| :: C.cm−|C| : D.cm−|D| 100

Mirroring AR : BR :: CR : DR 100
Systematic reduplication λ ∈ {1, . . . , 8} λA : λB :: λC : λD 100

Systematic insertion c ∈ A \A.B.C.D A ↓ c : B ↓ c :: C ↓ c : D ↓ c 100
Concaternation with
opposite term’s mirror

A.DR : B.CR :: C.BR : D.AR 100

Concatenation with own mirror A.AR : B.BR :: C.CR : D.DR 98
Repetition λ = 2 Aλ : Bλ :: Cλ : Dλ 90

used here, the success rate is surprisingly high, reaching 90 %
for a repetition of 2.

The second hypothesis which we refute combines trans-
formations. We consider the transformation which consists
in concatenating a string with its mirror s → s.sR. On
a small data set, we obtained a success rate of 100 % for
the hypothesis that A : B :: C : D would imply
A.AR : B.BR :: C.CR : D.DR. Experiments on the very
large data set used here invalidates it. However, the success
rate is astonishingly high: 98 %. This deserves a future study
of the cases where analogy is not preserved.

C. Conjectures

Against the negative result on systematic insertion not pre-
serving LCS distance, we empirically tested whether system-
atic insertion of one character, outside of the set of characters
found in the terms of the analogy, would preserve it. To
much of our surprise, we observed a success rate of 100 %
as reported on the first middle row in Table IV. The problem
with the non-preservation of LCS distance is linked with the
number of non-contiguous sequences in LCS. It may well be
the case that analogy somehow enforces some balance there,
so that Def. 2 is met. Still, this does not make a proof.

As an additional conjecture, we considered a transformation
which requires the entire knowledge of the analogy, as was the
case for max-length casting. We call opposite term of a string
in an analogy the other string in the set of means or extremes,
i.e., A is the opposite term of D and B is the opposite term of
C, and reciprocally. The second middle row in Table IV stands
for the test of this transformation, i.e: that A : B :: C : D
would imply A.DR : B.CR :: C.BR : D.AR. The success
rate on the very large data set is 100 %.

It is in fact possible to give a theoretical proof of this second
conjecture. In fact, A.DR : B.CR :: C.BR : D.AR is an
instance of A′ : B′ :: B′R : A′R where all characters
in A′ and in B′ are exactly the same with exactly the same
number of occurrences. As d(A′, B′) = d(B′R, A′R) and
d(A′, B′R) = d(B′, A′R) by properties of edit distances, the
second conjecture can be proved a theorem.

VI. APPLICATION TO RESIZING ANALOGIES

The ultimate goal of this study is in fact to design
transformations of analogies between variable-length strings
into equivalent analogies between fixed-length strings for
the purpose of their resolution. Let α denote the operation
of solving an analogy, i.e., finding all strings D such that
A : B :: C : D, given three strings A, B and C. It is a
mapping from the set of triples of strings to the power set of
the set of strings.

α : (A∗)3 7→ 2A
∗

(A,B,C) → {D ∈ A∗ / A : B :: C : D}
(5)

This is justified by the two following facts. Firstly, formal
analogical equations on strings may have several solutions.
For instance, a : aa :: b : x has two solutions ab and ba
when considered as an analogy of commutation10 Secondly,
formal analogical equations on strings may have no solution.
For instance, ab : dk :: te : x has no solution.

We are interested in the following commutative diagram.

(A,B,C) (t(A), t(B), t(C)))

D t(D)

t

α α

t

(6)

where the transformation t makes all strings of the same
length. The simple use of max-length casting leads to obvious
possibilities, e.g., aaabbbccc : aabbcc :: aabbcc : x → aaabb-
bccc : xxxaabbcc :: xxxaabbcc : x′. Now, although still not
clear at the moment, the conjecture on the concatenation with
the opposite term’s mirror may lead to fruitful considerations.

VII. CONCLUSION

We examined the problem of determining transformations
on strings which preserve analogy. We restricted ourselves to
formal analogies of commutation between strings of charac-
ters, for which we adopted a definition which mainly relies on
LCS distance.

10 And one, aa, if considered as an analogy of repetition.

Experiments on more than 16 million formal linguistic ex-
amples confirmed that max-length casting and systematic redu-
plication preserve analogy of commutation. The experiments
also confirmed that repetition does not preserve analogy in
general, but a high success rate was observed. Our framework
allowed us to conjecture that, first, systematic insertion of
a character not appearing in the strings, and, second, con-
catenation with the opposite term’s mirror, also both preserve
analogy. The proofs of on of these two conjectures remain an
open problem.

ACKNOWLEDGEMENT

This research was supported in part by grant-in-aid
no 18K11447 entitled “Self-explainable and fast-to-train ex-
ample-based machine translation using neural networks.’ from
the Japanese Society for the Promotion of Science (JSPS).

APPENDIX

A. Proofs for Transformations Preserving LCS Edit Distance
1) Mirroring:

∀(s1, s2) ∈ (A∗)2, d(sR1 , s
R
2) = d(s1, s2) (7)

For the LCS edit distance, the proof is obvious as the mirror
of any longest common sub-sequence of two strings is the
longest common sub-sequence of the two mirrored strings.

2) Systematic Reduplication:

∀(s1, s2) ∈ (A∗)2, d(λs1, λs2) = λ× d(s1, s2) (8)

The proof uses a lemma on the LCS length itself.

∀(s1, s2) ∈ (A∗)2, |LCS(λs1, λs2)| = λ× |LCS(s1, s2)| (9)

Prop.. (8) derives immediately from Lemma (9) and Def. (1)
for LCS distance. The proof of Lemma (9) is as follows: a
common substring of λs1 and λs2 is λLCS(s1, s2), of length
λ× |LCS(s1, s2)|. Now, if an extra character can be added to
it, this would imply that a character could have been added
into LCS(s1, s2,), which contradicts the fact that LCS(s1, s2,)
is a longest common sub-sequence. Hence, λLCS(s1, s2) is a
longest common sub-sequence of s1 and s2.

B. Proofs for Transformations Preserving Analogy
1) Max-length casting: Given an analogy, it is always

possible to prefix the strings with as many characters as needed
to cast them into the maximum length of the strings. The
character for prefixing is chosen outside of the set of characters
appearing in the strings. The proof is easy. It firstly uses the
fact that the LCS edit distance of two strings is the same as the
LCS edit distance of these strings deprived of their common
prefix (see Table II), and secondly Prop. (3).

2) Mirroring: Prop. (4) for mirroring derives from Prop. (7)
and the fact that the number of occurrences of a character in
a string is left unchanged through mirroring.

3) Systematic Reduplication: Prop. (4) for systematic redu-
plication derives from Prop. (8) and the fact that the number
of occurrences of characters belonging to A, B, C and D is
just multiplied by a factor of λ in λA, λB, λC and λD. The
constraint on number of occurrences of characters thus holds.

REFERENCES

[1] M. Abdou, A. Kulmizev, and V. Ravishankar. MGAD: Multilingual gen-
eration of analogy datasets. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[2] L. Allison and T. I. Dix. A bit string longest common subsequence
algorithm. Information Processing Letters, 23:305–310, 1986.

[3] Aristotle. Poetics. Penguin, London, 1996. translated with an
introduction and notes by M. Heath.

[4] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In Proceedings of the 47th
Annual Symposium on the Theory of Computing (STOC’15), pages 51–
58. ACM, 2015.

[5] A. Drozd, A. Gladkova, and S. Matsuoka. Word embeddings, analogies,
and machine learning: Beyond king - man + woman = queen. In
Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages 3519–3530. The
COLING 2016 Organizing Committee, 2016.

[6] R. Fam and Y. Lepage. Tools for the production of analogical grids and
a resource of n-gram analogical grids in 11 languages. In Proceedings
of the 11th International Conference on Language Resources and Eval-
uation (LREC 2018), pages 1060–1066, Miyazaki, Japan, May 2018.
ELRA.

[7] V. Kaveeta and Y. Lepage. Solving analogical equations between strings
of symbols using neural networks. In Proceedings of the Computational
Analogy Workshop at the 24th International Conference on Case-Based
Reasoning (ICCBR-16), pages 67–76, Atlanta, Georgia, October 2016.

[8] P. Langlais, P. Zweigenbaum, and F. Yvon. Improvements in analogical
learning: application to translating multi-terms of the medical domain.
In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2009), pages 487–495,
Athens, Greece, March 2009. Association for Computational Linguistics.

[9] Y. Lepage. Solving analogies on words: an algorithm. In COLING-
ACL’98, volume I, pages 728–735, Montréal, 1998.

[10] Y. Lepage. Proportional analogy in written language data. In N. Gala,
R. Rapp, and G. Bel-Enguix, editors, Language, Production, Cognition
and the Lexicon, Text, Speech and Language Technology 48, pages 1–
23. Springer International Publishing Switzerland, 2014.

[11] V. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics-doklady, 10(8):707–710, Feb. 1966.

[12] T. Mikolov, W.-T. Yih, and G. Zweig. Linguistic regularities in continu-
ous space word representations. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT 2013), pages
746–751, Atlanta, Georgia, June 2013. Association for Computational
Linguistics.

[13] J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors
for word representation. In Proceeedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, Doha, Qatar, October 2014. Association for Computational
Linguistics.

[14] R. Rhouma and P. Langlais. Experiments in learning to solve formal
analogical equations. In M. T. Cox, P. Funk, and S. Begum, editors,
Proceedings of the 26th International Conference on Case-Based Rea-
soning (ICCBR-18), pages 438–453, Stockholm, Sweden, August 2018.
Springer.

[15] J. A. Schreider. Equality, Resemblance, and Order. Mir Publishers,
1975.

[16] T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and S. Yamamoto.
Toward a broad coverage bilingual corpus for speech translation of travel
conversation in the real world. In Proceedings of LREC 2002, pages
147–152, Las Palmas, May 2002.

[17] R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
Journal of the Association of Computing Machinery, 21(1):168–173, Jan.
1974.

[18] S. Wu, U. Manber, G. Myers, and W. Miller. An O(NP) sequence
comparison algorithm. Information Processing Letters, 35:317–323,
April 1990.

[19] T. Zhao and Y. Lepage. Context encoder for analogies on strings.
In Proceedings of the 32th Pacific Asia Conference on Language,
Information and Computation (PACLIC 32), pages ??–??, 2018.

