
Iterative training for unsupervised word embedding mapping

Sijia Yu and Yves Lepage

Waseda University
2-7 Hibikino, Wakamatsu-ku, Kitakyushu-shi, 808-0135 Fukuoka-ken, Japan

ysy@fuji.waseda.jp, yves.lepage@waseda.jp

Abstract
The problem of word embedding mapping is to map word embeddings trained independently for two languages one onto another, i.e., to
map each word in one language onto a word in the other language. We propose an iterative training of the state-of-the-art method but
we modify the loss function of the generator of the GAN used. In addition, we introduce an iterative adjustment method to produce a
pseudo-dictionary which expands at each iteration while minimising the average Euclidean distance between source and target words in
the pseudo-dictionary. We present a range of experiments with several variants. In our experiments, we obtained slight but consistent
improvements over the state-of-the art method. We provide measures of correlation with machine translation scores for all the variants.

1. Introduction
Word embeddings are continuous representations of

words in high dimension vector spaces built using vari-
ous models, like the CBOW model (Mikolov et al., 2013a).
Previous work (Mikolov et al., 2013b) showed that the dis-
tribution of words with the same meaning in different vec-
tor spaces built independently for different languages, ex-
hibit similar geometric structures in reduced dimensional
spaces obtained using dimension reduction methods like
principal component analysis (PCA). This led to the intu-
ition that word embeddings for different languages could
be linearly mapped one onto another.

The work in bilingual word embedding mapping
started from supervised learning with thousands of pairs
of words in the dictionary. It can be considered as min-
imising the least square loss or squared Euclidean distance
between the mapping word embedding and the target word
embedding models (Mikolov et al., 2013b).

min

n∑
i=1

‖Wxi − zi‖2 (1)

In Equation (1), W ∈ Rd×d is the mapping matrix,
(xi, yi)i∈1,2···n are pairs of word vectors from the source
and target matrices X,Z ∈ Rn×d of each embedding
model. The problem can be treated as a quadratic prob-
lem by constraining W ∈ Rd×d to be an orthogonal ma-
trix and by normalising the word embedding vectors in

Figure 1: Illustration of bilingual word embedding map-
ping from English (left) to Spanish (right).

length (Xing et al., 2015). Using singular value decom-
position (SVD) can be used to find an orthogonal map-
ping matrix W (Artetxe et al., 2016). Recent work showed
that unsupervised methods can also be used to map word
embeddings separately trained from monolingual corpora
(Conneau et al., 2017; Artetxe et al., 2018)

The contribution of this paper is as follows. We ap-
ply iterative training with the state-of-the-art generative
adversarial neural networks (GAN) model for unsuper-
vised learning of word embedding mappings with a mod-
ified generator loss function to ensure better back transla-
tion. We also apply an iterative adjustment of the mapping
which relies on iteratively updating a pseudo-dictionary
used for internal evaluation.

The paper is structured as follows. Section 2. reviews
the main techniques used in the state-of-the-art techniques.
Section 3. describes our proposal, i.e., iterative training and
iterative adjustment, with some improvements. Section 4.
describes the data used in the experiments, the settings and
the results obtained over a range of models.

2. Bilingual word embedding mapping
2.1. Orthogonal mapping matrix and singular value

decomposition

It was showed that normalising word vectors in length
and applying an orthogonal transformation makes the map-
ping matrix of a higher quality (Xing et al., 2015). Normal-
ising the matrix can be formulated as the minimalisation
problem (Artetxe et al., 2016), shown in (2).

W = arg min
W
‖WX − Z‖F ,W

TW = I (2)

Here, W is the mapping matrix and X , Z are the source
and target word embedding matrices. Our goal is to min-
imise the Frobenius norm ‖WX − Z‖F betweenWX and
Z, in simpler words, minimising the square error rate be-
tween the two matrices WX and Z, and to constrain W
to be orthogonal. This can be achieved by applying singu-
lar value decomposition (SVD) on ZTX to obtain UΣV T

where W = UV T . The objective is written as in (3).



W = arg min
W

∑
i

‖Wxi − zi‖2

= arg min
W

∑
i

(
‖Wxi‖2 + ‖zi‖2 − 2× 〈Wxi, zi〉

)
= arg max

W

∑
i

〈Wxi, zi〉 (3)

where 〈., .〉 notes the inner product. The objective
can be achieved by maximising the trace of the ma-
trix, i.e., by looking for a matrix W such that W =
arg maxW Tr(WXZT ), with ZTX = UΣV T . This is
equivalent to determineW = arg maxW Tr(ΣTUTWV ).
Since U and V are orthogonal and since Σ is diagonal,
W = UV T maximises the trace.

2.2. Search methods
2.2.1. Nearest neighbour (NN) search

Given a source word, the nearest neighbour (NN)
search method retrieves the target word vector which is
ranked the first to the source word vector by similarity.

NN(Wxi, Z) = argzj∈Z min cos(Wxi, zj) (4)

In practice, when retrieving target words from source
words using NN search, some target words exhibit a ten-
dency to be near many source word vectors at the same
time. They are wrongly considered to be the translation of
too many source words, i.e., they attract too many words.
For that reason they are called hubs, and their existence is
called the hubness problem (Dinu and Baroni, 2014).

2.2.2. Cross domain similarity local scaling (CSLS)
To address the hubness problem, a method called cross

domain similarity local scaling (CSLS) was introduced in
(Conneau et al., 2017). For a pair of words (xi, wj), the
objective is to minimise the distance between the centroid
of the k nearest neighbours of xi mapped onto the tar-
get domain and the centroid of the k nearest neighbours
of zj mapped back onto the source domain. It thus relies
on computing the average similarity between Wxi and the
centroid of the set of its closest target neighbours obtained
through mapping:

Mt(Wxi) =
1

k

∑
zj∈Tk(Wxi)

cos(Wxi, zj) (5)

Tk(Wxi) is the set of the k nearest neighbours to Wxi in
the target domain. Ms(zj) can be computed in the other
direction in a similar way from a target word zj .

For a given vector Wxi obtained by mapping a word
xi onto the target domain, the CSLS method will thus re-
trieve the word zj which will minimise the criterion given
in Equation (6).

csls(Wxi, zj) = 2 cos(Wxi, zj)

−Mt(Wxi)−Ms(zj)
(6)

This criterion should penalise hubs, and thus mitigate the
hubness problem.

2.3. Unsupervised bilingual embedding mapping:
use of GANs

State-of-the-art methods for solving the word embed-
ding mapping problem in its unsupervised version, use
generative adversarial neural networks (GANs). The loss
functions for the discriminator and the generator are de-
fined respectively in Equations (7) and (8).

LD(θD|W ) =− 1

n

l∑
i=1

log(PD(Wxi))

− 1

m

m∑
j=1

log(1− PD(zj))

(7)

LW (W |θD) =− 1

m

m∑
j=1

log(PD(zj))

− 1

n

n∑
i=1

log(1− PD(Wxi))

(8)

The generator is simply the linear mapping matrix W .
The problem is considered a binary classification problem,
hence, the output of the discriminator, PD, is a number
between 0 to 1. Its parameters are θD; n and m are the
number of samples in the mapped embedding and the tar-
get embedding respectively.

As for the loss of the discriminator, in the ideal situa-
tion, PD(Wxi) should be 1 andPD(zj) should be 0, mean-
ing that the discriminator correctly distinguishes between
the source and target word vectors. In contrast, the genera-
tor tries to fool the discriminator to judge the embeddings
in an opposite way. The complete procedure is that the
generator first generates some mapping embeddings from
source embeddings randomly, and the discriminator judges
whether the word embedding vectors are from the source
embedding space or the target embedding space, according
to which the discriminator and the generator update their
parameters respectively.

Algorithm 1 Procrustes refinement
Require:

Source embedding: X
Target embedding: Z
Input mapping matrix: W

Ensure:
repeat

F ← CSLS retrieval by (X,Z,W)
W ← V UT , XTFZ = UΣV T

until convergence
return W

2.4. Procrustes refinement
The Procrustes refinement (Artetxe et al., 2017; Con-

neau et al., 2017) imposes the orthogonality constraint on a
bilingual embedding mapping matrix W and minimises its
Frobenius norm at the same time. This refinement is imple-
mented by the self-learning algorithm proposed in (Artetxe
et al., 2017; Conneau et al., 2017). It consists in building a
matrix F by using CSLS retrieval from an initial matrixW .



The orthogonality constraint is applied on this matrix by
using SVD, as described in Section 2.1. to get a new ma-
trix W . This is repeated until convergence (see Algo. 1).

2.5. Model selection
A problem in unsupervised word embedding mapping

is to find a validation to select a best modelW . The valida-
tion criterion used in (Conneau et al., 2017) calculates the
average cosine similarity between those word vectors in a
pseudo-dictionaryD retrieved by CSLS in the most 10,000
frequent words. The model W which is selected as output
is the one which maximises the average cosine similarity
between the word vectors in the pseudo-dictionary.

3. Proposal: iterative training and
adjustment

We propose to make the training procedure of bilingual
embedding mapping more precise by applying the three
following processes in the following order.

• Firstly we perform an iterative training using a GAN.
This is described in Algorithm 2. However, different
from previous work, we add a term in the loss func-
tion of the generator.

• Secondly we perform an iterative adjustment of the
obtained mapping. It is the same as the first step, ex-
cept that no GAN is used here. Algorithm 2 is exe-
cuted again, but without the line marked ♠. During
this iterative process, the mapping matrix W is ad-
justed because the pseudo-dictionary changes at each
iteration.

• Thirdly, we apply Procrustes refinement as described
in Section 2.4., and as is the case in previous works.

The improvements introduced above are presented in each
of the following sub-sections.

Algorithm 2 Iterative training using GAN (with line ♠)
or iterative adjustment (without line ♠)

Require:
Source embedding: X
Target embedding: Z
A diagonal mapping matrix W

for initialisation in the case of
iterative training with GAN

from iterative training in the case of
iterative adjustment

Ensure:
repeat

Determine D (see Section 3.2.)
♠ Train using GAN (see Section 2.3.)

with new generator loss (see Section 3.1.)
Impose orthogonality constraint, i.e.,

update W using Eq. (11) (see Section 3.3.)
Compute average cosine similarity

over word pairs in D
until average cos. sim. decreases (see Section 2.5.)
return W

3.1. Modification of the loss function

The first improvement we bring is in the assessment of
the quality of the mapping while learning W with GAN.
A direct measure of the Euclidian distance between the
source words in the pseudo-dictionary D and their esti-
mated translations gives an idea of how close they are: the
smaller the average Euclidian distance, the more exact the
bilingual embedding mapping. Globally, we aim at min-
imising the average Euclidean distance over all the words
in D. We thus add the term given in Equation (9) to the
loss.

LG = −1

k

k∑
i=1

‖Wxi − zi‖2 (9)

k is the size of the pseudo-dictionary. The generator loss
function we use in our GAN is LW (W |θD) as defined
in (8), plus the term LG in Equation (9).

3.2. Pseudo-dictionary for iterative training and
iterative adjustment

The second improvement we bring is in the selection of
the words present in a pseudo-dictionary D which is used
to internally assess the quality of the mapping. In the state-
of-the-art method, there is also a pseudo-dictionary, but the
words are selected at random. We think that the words inD
should be selected according to their probability of being in
an actual dictionary between the two languages at hand as
determined by the current mapping. As such a dictionary is
bidirectional, we select the word pairs from the source lan-
guage to the target language, and back. At each iteration,
we take all the common word pairs by retrieving X and Z
using the CSLS search method, in both directions, from X
to Z and from Z toX . D is thus defined as the intersection
of the two sets of pairs of words retrieved using the CSLS
search method in both direction, as shown in (10).

D ← CSLS(WX,Z) ∩ CSLS(Z,WX) (10)

If the overall training is able to learn a better mapping, the
number of word pairs should increase, hence, the pseudo-
dictionary should expand. Simultaneously, the value of the
generator loss should decrease when used in conjunction
with the GAN. When used in the iterative adjustment pro-
cess, the changes in the pseudo-dictionary has the effect of
refining and better adjusting the mapping.

3.3. Ensuring an orthogonal mapping

So as to ensure an orthogonal mapping we use the tech-
nique presented in (Cisse et al., 2017). It consists in updat-
ing the matrix W using the formula in (11).

W ← (1 + β)W − βWWTW (11)

The overall iterative training is stopped by using the same
criterion as in the state-of-the-art technique, i.e., the model
selected at the end is selected as presented in Section 2.5.
This is also used in the state-of-the-art method that we use
for our baseline.



Parameter Value
β for orthogonal learning 0.001
Batch size 32

Discriminator
Number of layers 2
Number of layer nodes 2,048
Dropout 0.1
Learning rate decay 0.98

Table 1: Parameter values for bilingual embedding map-
ping experiments

4. Experiments
4.1. Languages and data sets

We test and compare our proposal on six European
languages: German (de), Spanish (es), English (en),
Finnish (fi), French (fr) and Italian (it); more precisely, on
all language pairs involving English: en–es, en–de, en–fi,
en–fr and en–it, in both directions, This makes a total of 10
language pairs.

The reason to choose these language pairs lies in
the availability of comparable data. Firstly, freely pre-
trained word embedding models for all these languages are
available (Grave et al., 2018; Bojanowski et al., 2017).1

Secondly, a freely aligned multilingual corpus involving
all these languages is also available, the Europarl cor-
pus (Koehn, 2005).2

As for the comparability of data, the word embeddings
were all trained on Wikipedia, known to be comparable
across at least European languages. The dimension of the
embedding space is 300 for all languages.

The Europarl corpus in its version 3 contains a rela-
tively large amount of lines common to all the 6 chosen
languages. It is thus possible to run translation experi-
ments on corresponding data, so that the accuracy reported
can be supposed to reflect linguistic differences across the
language pairs considered. In our translation experiments,
we used 480,000 lines of the Europarl corpus v.3, aligned
across all the selected languages. One tenth, i.e., 48,000
lines is used for testing. the other nine tenths are used for
training and development, As usual, BLEU is used to mea-
sure translation accuracy.

4.2. Experimental settings
The experiments on bilingual embedding mapping in-

volve some parameter settings given in Table 1.
We first applied our iterative GAN with the most fre-

quent 75,000 words, for iterative adjustment, we used the
most 20,000 frequent words and for Procrustes refinement,
the most 15,000 frequent words. We performed iterative
adjustment 30 times and the Procrustes refinement 5 times.

As for machine translation experiments, we used the
standard GIZA++/MOSES SMT system (Koehn, Philipp
et al., 2007) with its default settings.

1https://fasttext.cc/docs/en/
crawl-vectors.html

2http://www.statmt.org/europarl/

Figure 2: The dotted curves give the word embedding
mapping accuracy along iterative training every 5 itera-
tions (en–es), computed before Procrustes refinement. The
black curve is the size of the pseudo-dictionary.

Figure 3: The dotted curves give the word embedding
mapping accuracy along iterative training every 5 itera-
tions (en–es), computed before Procrustes refinement. The
black curve is the average Euclidian distance (Eq. (9)).

4.3. Experiment results
The accuracy of the methods measured using the ref-

erence dictionaries released in (Conneau et al., 2017) are
given in Table 2. In the best configurations for the (GAN
CSLS +pro) and our method (Ours CSLS +adj+pro), our
method consistently slightly outperforms the state-of-the-
art method, in all language pairs, except for English–
German.

The addition of the Procrustes refinement is always
positive, even in the case of the addition of our iterative ad-
justment (compare line Ours +pro with line Ours +adj+pro
in Table 2).

When comparing searching methods, CSLS is consis-
tently better than the NN search method, as well as with
our method. This confirms the hypothesis that the hubness
problem is reduced by CSLS.

The correlation between accuracy of bilingual embed-
ding mapping and translation accuracy is relatively high
across all methods. It does not vary when comparing the
state-of-the-art method with our method in their basic or
refined versions. However it consistently increases for re-



Search Refinement en-de de-en en-es es-en en-fi fi-en en-fr fr-en en-it it-en Pearson’s corr.

GAN
NN 61.0 51.4 65.0 67.5 12.7 21.7 66.5 63.0 55.9 55.7 0.74

+pro 71.0 69.9 78.4 79.3 36.8 56.9 77.9 77.9 74.5 74.9 0.84

CSLS 68.9 59.4 74.8 76.3 21.1 28.3 75.3 71.1 65.3 64.3 0.75
+pro 75.1 72.9 82.3 84.2 43.7 59.8 81.7 82.3 77.8 78.1 0.84

Ours
NN 63.3 64.3 71.7 71.1 21.6 32.1 67.9 63.1 63.1 64.9 0.78

+adj 69.0 69.1 78.9 78.9 33.0 51.5 77.5 76.4 73.5 73.3 0.84
+adj+pro 71.0 69.5 79.8 79.5 38.2 57.3 78.3 78.3 75.3 75.3 0.84

CSLS 70.1 68.9 76.9 78.5 31.7 42.3 77.7 72.9 73.5 73.3 0.78
+adj 73.7 73.1 82.1 83.7 41.8 56.6 81.6 81.4 77.8 77.8 0.84
+adj+pro 74.5 73.3 82.3 84.5 45.7 61.3 82.5 82.7 78.3 78.3 0.85

BLEU scores 34.1 34.7 19.9 27.1 29.4 29.4 25.6 31.0 14.6 23.7

Table 2: Accuracy for the state-of-the-art (GAN) and our iterative training method (ours), in several variants, i.e., using
both search methods (NN or CSLS) and with or without refinement methods (+adj for iterative adjustment and +pro for
Procrustes refinement). Boldface numbers are the best scores on each column. The last line in the table gives the BLEU
scores. The last column gives Pearson’s correlation of the accuracy with the BLEU scores over all language pairs (all
p-values were less than 1× 10−2).

fined versions, which is a positive point, indicating that
the translation dictionaries obtained from word embedding
mappings obtained by refined versions could be more use-
ful in a machine translation systems. However, the small
number of language pairs used here to compute the corre-
lation may be questioned. In future work, experiments on
all available Europarl languages could be considered to get
more reliable correlation values.

Figure 2 traces the size of the pseudo-dictionary output
by the iterative adjustment process and the accuracy for
the English–Spanish language pair along iterations. The
curves fit one to another for both search methods (NN and
CSLS). This shows a strong relationship between the size
of the pseudo-dictionary and the accuracy of the model.

Figure 3 traces the accuracy of the model and the av-
erage Euclidian distance along the iterations for the same
language pair along iterative training, again for both search
methods (NN and CSLS). Following expectation, when
the average Euclidian distance decreases, the accuracy in-
creases. The best model is reached at iteration 25.

5. Conclusion
In this paper, we proposed an iterative training method

for the unsupervised word embedding mapping problem
based on the state-of-the-art method that uses a generative
adversarial neural network. Firstly we perform iterative
training using a modified GAN where we added a new term
in the generator loss function. Secondly we perform an it-
erative adjustment of the mapping obtained by training us-
ing a pseudo-dictionary which is refined at each iteration
to contain more and more better aligned words. Thirdly
we apply the Procrustes refinement as is done in previous
works. In addition, we also use a more effective orthog-
onalisation technique which we apply on the matrix rep-
resenting the mapping. Our method consistently slightly
out-performs the state-of-the-art method.
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