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Abstract—Morphological segmentation is useful for processing
Mongolian. In this paper, we manually build a morphologi-
cal segmentation data set for Mongolian. We then present a
character-based encoder-decoder model with attention mecha-
nism to perform the morphological segmentation task. We further
investigate the influence of analogy features extracted from
scratch and improve the performance of our model using multi
languages setting. Experimental results show that our encoder-
decoder model with attention mechanism provides a strong
baseline for Mongolian morphological segmentation. The analogy
features provide useful information to the model and improve the
performance of the system. The use of multi languages data set
shows the capability of our model to acquire knowledge through
different languages and delivers the best result.

Index Terms—Morphological Segmentation, Mongolian,
Encoder-Decoder model

I. INTRODUCTION

Morphological segmentation is the task of dividing a given
word into morphemes. Since the words of Mongolian have
rich morphological structure, this task is considered as an
important issue in many NLP applications, e.g., automatic
speech recognition [1], machine translation [2], information
retrieval [3] and named entity recognition [4], [5].

There are two kinds of segmentation tasks. The first one is
surface segmentation. In this case, the task is to simply seg-
ment a word as a sequence of substrings: given a word, decide
where to split into morphemes. For example, a Mongolian
word written in classical Mongolian script, “     ” (sigube),
means “judged”, will be segmented as two morphemes, they
are “sigu” and “be”.

The second one is referred as canonical segmentation [6],
it involves further processing to reconstruct the orthographic
transformations. In classical Mongolian, edit operations on
strings, like deletion, insertion and substitution, are neces-
sary when performing the morphological segmentation. If we
ignore the string operation, the morphemes are wrong. For
instance, a Mongolian word “            (batvlagan-v)” will be
segmented as “         (batvlag a)”, “   (n)” and “   (-v)”.
It does not simply cut the words into morphemes, but also
insert the character “ ” to transform “     (a)” into the final form
of “    ( a)”. Similarly in English, “inexhaustivity” will be
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word: inexhaustivity
surface segmentation: in + exhaustiv + ity

canonical segmentation: in + exhaustive + ity

Fig. 1. Example of surface and canonical segmentation for English word
“inexhaustivity”.

segmented as “in”, “exhaustive” and “ity”. Figure 1 indicates
the difference between the two kinds of segmentation.

To the best of our knowledge, there is no public data on both
surface and canonical segmentation in Mongolian. Previous
work in [4] only segments the non-breaking space suffixes for
nouns. But we also include the suffixes for verbs. Therefore,
we address the issue of surface segmentation and canonical
segmentation with a unified model for both Mongolian nouns
and verbs.

Inspired by the recent success of encoder-decoder model
with attention mechanism in neural machine translation [7],
[8], we design a character-based encoder and decoder model
for Mongolian morphological segmentation. The model en-
codes every character using bidirectional long-short term
memory network (LSTM) [9] to form the context vector and
decodes with attention mechanism to generate the characters
at each time step. More importantly, we study the capability
of our model to share the character level features learned
from different languages in a multi-source setting. We also
investigate the effect of using word form features. These
additional information would benefit the segmentation task
performance, especially for the low resource languages.

The main contributions of this work are as follows:
• Build a data set for Mongolian morphological segmenta-

tion;
• Provide a baseline system for Mongolian morphological

segmentation based on encoder-decoder model with at-
tention mechanism;

• Augment the model with analogy features and four lan-
guages multi-source input.

The paper is organized as follows. Section II presents some
related work. Section III introduces the issues in morpho-
logical segmentation for Mongolian. Section IV explains our
model to perform morphological segmentation. Section V
presents the experiments and analyses the results obtained.
Section VI gives the conclusion of our work.



II. RELATED WORK

There are several approaches to address morphological seg-
mentation. The first one is the unsupervised approach. It aims
to extract the morphemes directly from a list of unlabelled
data. [10] proposed a method based on Minimum Description
Length (MDL) to extract the morphemes. The method do not
need annotated data to train the model.

The second one is the semi-supervised approach. It utilizes
both labeled and unlabeled data, like [11], [12]. The third
one is the supervised approach. [13] treated the morphological
segmentation task as a sequence labeling problem of assigning
a predefined label to each character. They showed that high
performance can be achieved with the use of hand-crafted
features and classifier, like Conditional Random Field (CRF)
[14].

Recently, recurrent neural networks have been used on char-
acter level problem, like language model [15], morphological
tagging [16]. A windowed LSTM approach was presented to
learn extra information about the context input words to seg-
ment Hebrew and Arabic words [17]. But this LSTM approach
can not address the problems in canonical segmentation.

III. MORPHOLOGICAL SEGMENTATION IN MONGOLIAN

As an agglutinative language, Mongolian has a complex
morphological structure. The words are constructed by suc-
cessively concatenating suffixes to the root. These suffixes
can be categorized into two groups: derivational suffixes and
inflectional suffixes. Derivational suffixes, or word-building
suffixes, are concatenated to the end of the root. They change
the meaning of the root. After one or more derivational suffixes
are concatenated to a word, the word will become to a stem.
On the other hand, inflectional suffixes, or word-changing
suffixes, are concatenated to the end of the stem. They can
be categorized into two groups based on the part-of-speech of
the word, nouns and verbs:
• nominal suffixes: plural, reflexive and case suffixes;
• verbal suffixes: voice, aspect and mood suffixes.

Figure 2 shows the order of suffixes inside a word in Mon-
golian. There is no prefix in Mongolian. A noun word must
have a case suffix, in the meantime, a verb must have a mood
suffixes. The case suffixes and the mood suffixes are at the
end of the word.

To the best of our knowledge, There is still no freely
available data for morphological segmentation in Mongolian.
To remedy to that, we prepare a data set for Mongolian
morphological segmentation.

We crawled around 5,000 sentences from Mongolian news
websites. We sampled 10,000 words using uniform distribu-
tion. All kinds of suffixes are include in the data.

IV. PROPOSED MODEL

In this section, we present the framework used in our
experiments. It is an encoder and decoder model with attention
mechanism [8].

Stem
(noun) + [Plural

suffix]
+ [Reflexive

suffix]
+ Case suffix

Stem
(verb) + [Voice

suffix]
+ [Aspect

suffix]
+ Mood suffix

Fig. 2. Inflectional suffixes order inside a word for nouns and verbs in
Mongolian. The “[]” means optional suffix: 0-1 occurrence.

A. Encoder-decoder model with attention mechanism

A sequence of characters x = x1, . . . , xm is read by a bidi-
rectional recurrent encoder. The encoder outputs a sequence of
hidden states hi, where the hi is the concatenation of forward
→
hi and backward

←
hi as shown in Formula 1.

→
hi = f(

→
h i−1, s)

←
hi = f(

←
h i−1, s)

s = Esxi

(1)

Es is the character embedding matrix, which is shared across
different languages in the multi-source setting. Function f is
the function to compute the current hidden state based on the
previous one.

Similar to the encoder, the decoder is also a recurrent
network however it is a uni-directional. Formula 2 shows how
to compute a new hidden state zj in the decoder from the
encoder output hi. It computes the new hidden state using
a tanh activation function g based on previous hidden state
zj−1, an embedding ej−1 and a conditional input vector cj
derived from the encoder output hi. We uses LSTMs [9] for
all recurrent cells.

zj = g(zj−1, ej−1, cj) (2)

The conditional input vector cj is a weighted sum of the
attention score ai and the encoder output hi. There exist
several ways to calculate the attention scores. Here we describe
the method proposed in [8]. It is a feed-forward neural network
architecture with learnable layer which consists of va, W a

and Ua. They are shown in Formula 3.

score(zj−1, hi) = vT
a tanh(W azj−1 +Uahi)

aij =
exp(score(zj−1, hi))∑m
j−1 exp(score(zj−1,hi))

cj =

m∑
j

aijhi

(3)

The last step is the generator. It outputs the target sequence
characters y = y1, . . . , yn by transforming the LSTM output
zj via a linear layer.

p(yj |y1, . . . , yn,x) = softmax(Wozj + bo) (4)
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Fig. 3. The architecture of the encoder-decoder model with attention mechanism. A Mongolian word “     ” (sigube) illustrates in this figure, it means
“judged”. Dash lines between the embedding and BiLSTM layer mean that there is a dropout between the link. A special character “+” denotes the segmentation
boundaries.

B. Multi-source model

The multi-source model is a way to train a single model for
several languages at once. [18] showed that training several
languages at the same time allows the model to learn fewer
parameters in the training step. Bear this in mind, we design
our model to use multiple codes of languages. The language
code of an input string is added to its beginning and end. For
example, the Mongolian word “     ” (sigube) will be input
as “<mn> s i g u b e <mn>”.

C. Analogical grids model

In this model, we add the identifier of the analogical grids,
which contain the respective word form, in front of the input
string of the system. We build analogical grids from the set of
words and its segmented form contained in the Mongolian data
set. The analogical grids are filtered using several saturation
threshold to study the influence of the saturation of the grid
in order to help the system to solve the task. If the word is
not existed in any of analogical grid, we just leave the input
string as it is.

An analogical grid is a matrix of words. Figure 4 displays an
example of analogical grids in both English and Mongolian. It
is automatically extracted from a set of words. Any four words
taken from any two rows and two columns is a proportional
analogy. Previous works, like [19]–[22], use it to study the
productivity of a given language because it captures the
organization of the lexicon in a language up to a certain extent.
Each word form is represented as a feature vector and then
grouped as a list of pairs of words by equal ratio before
constructed into analogical grids [23]. Formula 5 shows the
definition of analogical grids.

G1
1 :G

2
1 : · · · :Gm

1

G1
2 :G

2
2 : · · · :Gm

2
...

...
...

G1
n :G

2
n : · · · :Gm

n

∆⇐⇒
∀(i, k) ∈ {1, . . . , n}2,
∀(j, l) ∈ {1, . . . ,m}2,
Gj

i : G
l
i :: G

j
k : Gl

k

(5)
We can characterize analogical grid is by its size and

saturation. Size is simply the total number of cells inside
an analogical grid. It is calculated by simply multiplying the
number of lines and the number of columns (see Formula 6).
Thus, the analogical grids in Figure 4 have the size of
5× 4 = 20 (English) and 5× 4 = 20 (Mongolian).

Size = Number of lines× Number of rows (6)

On the other hand, saturation is the ratio between the
number of non-empty cells and the total number of cells (size)
of an analogical grid. Using Formula 7, we got saturation of
(16/20) × 100% = 80% (left) and (16/20) × 100% = 80%
(right) for analogical grids in the Figure 4.

Saturation =
Number of non-empty cells

Total number of cells
× 100% (7)

V. EXPERIMENTS

In our experiments, we first compare the performance of our
model with two baselines system in three languages: English,
German and Indonesian, to verify the effectiveness of our
model. The same model will be used to perform the seg-
mentation task in Mongolian. We expect some improvements
from our model when using a multi-source setting, where
we train on these four languages to perform segmentation on



show : shows : showing : showed
walk : walks : walking : walked
open : opens : opening :
study : : studying :
read : reads : reading :

   (yabv) : yabvhv : yabvn a : yabvjai
    (qNsi) : qNsihv : qNsin a : qNsijai
     (vnta) : vntahv : vntan a : vntajai
    (sal) : salhv : : saljai
    (han) : : : hanjai

Fig. 4. Analogical grids in English (top) and Mongolian (bottom). In the
Mongolian example, the second column is present tense, the third column is
future tense; the fourth column is past tense.

TABLE I
STATISTICS OF THE TRAINING DATA FOR ALL OF THE LANGUAGES. SEE

FIGURE 1 FOR THE DIFFERENCE BETWEEN CONCATENATED AND
NON-CONCATENATED SEGMENTATION.

Languages Average
length

Segmentation type (%) # Unique
morphemesnon-concatenated concatenated

English 8.20 22.88 77.12 6799
German 12.49 53.69 46.31 6983
Indonesian 8.65 23.60 76.40 3359
Mongolian 10.74 18.00 82.00 3987

Mongolian data set. Finally, we evaluate the influence of using
analogical grid identifier and attention mechanism.

A. Data used

We used the data created by [6]. It consists of three lan-
guages with different language families: English, German and
Indonesian. The English data was extracted from segmentation
derived from CELEX [24]. The German data was generated by
rules from DerivBase [25]. The Indonesian data was created
from the output of a rule-based morphological analyser for
Indonesian, MorphInd [26]. For each of the language, the data
is already in the format of 10-fold cross-validation experiment.
For each fold, we will have 8,000 words as the training set;
1,000 words as the development set; and another 1,000 words
as the test set.

For Mongolian, we use the data that described in Section III.
We also prepare the data for 10-fold cross-validation experi-
ment, in a similar way to the other three languages.

The statistics of the training data for each language are
shown in Table I. Table I exhibits that the average length of
German words is the longest among these four languages, fol-
lowed by Mongolian. English has the shortest words length in
average. Additionally, German data has the largest proportion
of non-concatenated segmentation. On the contrary, concate-
nated segmentation is dominant in Mongolian. The average
numbers of unique morphemes in German and English are
around two times higher than for Mongolian and Indonesian.

Figure 5 presents the statistics on the number of segmenta-
tion points to perform inside a word. We can observe that, for
both German and Mongolian, all of the words in the training

English German Indonesian Mongolian
0%

10%

20%

30%

40%

50%

60%

70%

80% Without segmentation
One segmentation
Two segmetation
More than two

Fig. 5. Average percentage of number of segmentation points to perform
inside a word.

set need to be segmented. For English and Indonesian, about
40 % and 30 % words do not need any segmentation. 80 %
of the words in German need to be segmented one time,
whereas it is more than 40 % in English and Mongolian.
It is obvious that Mongolian has the largest proportion of
performing two or more segmentation points inside a word.
In contrast, English and German have a very small percentage
of number of segmentations with more than one.

B. Evaluation metrics

We have four metrics to evaluate the performance of the
systems. When compare with the work in [6], we use the same
evaluation metrics. We also use another metric for Mongolian.
They are as follows:
• Error rate: one minus the proportion of guesses that are

completely correct.
• Edit distance: average Levenshtein distance [27] between

all guesses and their corresponding gold reference.
• Morphemes F1: compares the morphemes in guess and

gold reference. Precision is the proportion of morphemes
in guess that occur in gold. Recall is the proportion of
morphemes in gold reference that occur in guess. F1 is
the harmonic mean of precision and recall.

• Accuracy: the percentage of guesses that are completely
correct.

C. Experiment protocol

We perform a 10-fold cross validation experiments for each
of the four languages. We trained our model using adadelta
[28] as optimizer under 20 epochs. The model has one layer
to encode and another layer to decode. The number of hidden
states in the encoder and decoder are 128. We also use a
dropout layer after learning the character representation with
a dropout rate of 0.2. The model is adapted from OpenNMT
[29], which is an open-source framework for neural machine
translation based on pytorch. The model is then tested against
the test set and evaluated on the three metrics.



TABLE II
ENGLISH PERFORMANCES WITH OUR MODEL AND MULTI-SOURCE

SETTING.

Models Error rate Edit distance F1

Joint model 0.27(±0.02) 0.98(±0.34) 0.76(±0.02)
ED model 0.25(±0.01) 0.47(±0.02) 0.78(±0.01)

Our base model 0.22(±0.01) 0.41(±0.03) 0.79(±0.03)
Multi-source model 0.21(±.01) 0.40 (±0.00) 0.78(±0.01)

TABLE III
GERMAN PERFORMANCE WITH OUR MODEL AND MULTI-SOURCE

SETTING.

Models Error rate Edit distance F1

Joint model 0.41(±0.03) 1.01(±0.07) 0.76(±0.02)
ED model 0.26(±0.02) 0.51(±0.03) 0.86(±0.01)

Our base model 0.23(±0.02) 0.45(±0.04) 0.79(±0.02)
Multi-source model 0.23(±0.02) 0.40 (±0.02) 0.78(±0.01)

TABLE IV
INDONESIAN PERFORMANCE WITH OUR MODEL AND MULTI-SOURCE

SETTING.

Models Error rate Edit distance F1

Joint model 0.10(±0.01) 0.15(±0.02) 0.93(±0.01)
ED model 0.09(±0.01) 0.12(±0.01) 0.93(±0.01)

Our base model 0.08(±0.01) 0.11(±0.02) 0.92(±0.01)
Multi-source model 0.07(±0.00) 0.10(±0.01) 0.92(±0.01)

D. Baselines

We take two different systems as our baselines in this
experiments to compare the performance of our model. The
first one is based on a log-linear probability model and the
second one is based on a neural network model.

Joint model: a feature-rich model that jointly learned to
perform segmentation and reconstruct the orthographic trans-
formation. It employs an importance sampling algorithm to
perform inference in the model [6]. This model achieved the
state of the art performance among non-neural network model.

Encoder-Decoder (ED) model: a character-based encoder-
decoder model explained in [30]. They used gated RNN (GRU)
[31] to encode one-hot character representation into a fixed
representation. The decoder map the representation into a
variable length sequence. The model can be extended to use a
Re-Ranker model to further boost the performance. However,
since our model has no separate steps for re-ranking, we only
choose the model without Re-Ranker for a fair comparison.

E. Experiment results

First, we compare our encoder-decoder model with three
different languages. Table II, III and IV show the experiment
results for each language respectively. Our model outperforms
the two baseline systems in terms of error rate and edit
distance in all the three languages. Although, we get a better
morpheme F1 score in English, it is not the case for German
and Indonesian. The highest error rate is observed for German.
This might be caused by the complexity of orthographic
transformation in this language. We get the best performance
in Indonesian. In addition, our models are also stable in all 10
folds.

TABLE V
MONGOLIAN PERFORMANCE WITH DIFFERENT MODELS

Models Accuracy (%) Edit distance F1 (%)
Our base 90.49 (±1.04) 0.14(±0.02) 91.48 (±1.03)

Multi-source 91.31 (±0.93) 0.13 (±0.02) 92.03 (±0.92)
Analogical grids 90.55 (±0.83) 0.15 (±0.02) 91.06 (±0.86)

TABLE VI
RESULTS OF MONGOLIAN CHARACTER BILSTM MODEL WITH DIFFERENT

ATTENTION MECHANISMS

Attention Accuracy (%) Edit distance F1 (%)
Gen 88.24 (±1.21) 0.17 (±0.03) 89.62 (±1.26)
Gen + feed 89.71 (±1.55) 0.15 (±0.03) 90.66 (±1.34)
MLP 88.11 (±1.30) 0.18 (±0.01) 90.14 (±1.51)
MLP + feed 90.46 (±0.98) 0.15 (±0.02) 91.46 (±0.76)
Dot 89.21 (±1.13) 0.16 (±0.02) 90.38 (±1.00)
Dot + feed 90.49 (±1.04) 0.14 (±0.02) 91.48 (±1.03)

Table V shows the results obtained in Mongolian. Despite
the fact that Mongolian words tend to have more segmentation
points to perform inside a given word in comparison to the
other languages, the results are very promising. One can think
that it is caused by having less canonical segmentation in Mon-
golian. Another reason is that Mongolian has a lower number
of morphemes. This means a lower number of suffixes, which
are more frequent in comparison to than other languages.

The use of multi-source languages input setting improves
the performance of the system and outperforms base model in
Mongolian. Similar behaviour can be observed in English and
Indonesian, but not in German. By analysing the stem errors in
Mongolian results, we think that the use of multi-source input
setting provides more knowledge when learning the context
of Mongolian characters. Here, we can see that our model is
able to capture common features among different languages
although they are not very close to each other.

Table VI shows the experiment results with different kind
of attention mechanisms:
• MLP attention [8]
• General (Gen) and Dot attention in [7].

We found that the Dot + feed attention performs slightly
better in terms of error rate and edit distance. It is a similar
observation on neural machine translation described in [32].
Due to the number of parameters are less, the Dot attention
mechanism is faster than other two attention mechanisms.
The use of input-feeding layer described in [7] gives a small
improvement for all type of attention mechanisms. This is
because that in this field the alignment is simpler than machine
translation.

We also evaluate our Mongolian grid augmented model
using different saturation threshold(≥ 10%, ≥ 50%, and
≥ 90%) to study the influence of saturation of analogical grids.
Results are shown in Table VII. When the saturation threshold
increases, we filtered out more grids. Thus, we have less words
inside the analogical grids. We compare the performance with
cluster identifier learned using K-means provided by word2vec
module [33] . We set the parameter to extract 200 clusters with
vector dimension is 300. Using only the highest analogical



TABLE VII
MONGOLIAN PERFORMANCE WITH DIFFERENT GRID IDS

Model Sat. Acc. Edit distance F1

Word2Vec – 89.95 (±1.22) 0.16 (±0.04) 91.00 (±1.21)

Grid
(all IDs)

≥10 89.50 (±1.39) 0.16 (±0.03) 90.67 (±1.39)
≥50 89.63 (±0.78) 0.16 (±0.02) 90.73 (±0.87)
≥90 86.29 (±4.11) 0.22 (±0.08) 87.33 (±4.04)

Grid
(highest

ID)

≥10 89.95 (±0.68) 0.15 (±0.01) 91.01 (±0.85)
≥50 90.30 (±1.17) 0.15 (±0.02) 91.03 (±1.23)
≥90 90.55(±0.83) 0.15(±0.02) 91.06(±0.86)

grid ID, the system outperform the performance of cluster
by word2vec. The reason is that analogical grid learn more
about the orthographic information than word2vec. Analogical
grids with higher identifier (ID) usually have higher saturation.
However, using all of the analogical grid IDs leads to lower
results.

F. Error analyses

By analyzing the results in Mongolian, we observed that
our model can predict the right suffix even when it fails at
reconstructing the orthographic transformations. For example,
the correct answer for “        (hagad-vn)” is: “hag a+d+vn”.
Our model is able to distinguish the suffix “-vn” although
it produces the wrong solution, “hagad+vn”. The same phe-
nomenon also exists in the other languages. In English, the
correct segmentation for the word “runner” is: “run+er”. How-
ever, our model outputs the guess of “runn+er”. It successes to
segment on the right position but fails to delete “n” at the end
of the first morpheme. Another example is in German for the
word “verschwendung”, which is supposed to be segmented
into “ver+schwende+ung”. In this case, our model is also able
to correctly segment the word into “ver+schwend+ung”, but it
is unable to insert the character “e” at the end of the second
morpheme.

Looking further at the output of Mongolian system, our
model can even predict stems better than the gold standard. For
example, the gold standard for “          (wlwlqadag)” is “wl-
wlqa+dag”. The guess given by our model is “wlw+lqa+dag”.
We can see that our model is capable to recognize the two
stems of “wlw” and “lqa”. This is possibly a better answer.
In English, the gold standard for “placed” is “placed”, our
model could predict the right answer “place+ed”. In Indone-
sian, the gold standard is: terjemah+an is better guessed as
“ter+jemah+an” by our model.

VI. CONCLUSION

We built a data set for Mongolian morphological segmenta-
tion. From that data, we found that Mongolian tends to have
a larger number of segmentation points inside one word in
comparison to the three other languages: English, German and
Indonesian.

We adopted the encoder-decoder model with attention
mechanism to perform morphological segmentation in Mon-
golian. We performed experiments in four different languages.
Experimental results show that we achieved a better perfor-
mance in all the three languages. Our model can be considered

as a strong baseline for Mongolian with the accuracy of
91.31% under the multi-source setting.

We concluded that the use of multi-source setting can give
an additional boost to the model. With multi-source setting,
our model could learn knowledge across languages although
they are not very close to each other. Adding analogical grid
identifier into the input string provide the orthographic features
about the surface form of the words. Integrating the use of
analogical grid identifier with multi-source setting may further
improve the system.
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