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Abstract—We build an example-based machine translation
system. It is an instance of case-based reasoning for machine
translation. We introduce numerical methods instead of symbolic
methods in two steps: retrieval and adaptation. For retrieval,
we test three different approaches to define similarity between
sentences. For adaptation, we use neural networks to solve analo-
gies between sentences across languages. Oracle experiments
allow to identify the best retrieval technique and to estimate the
possibilities of such an approach. The system could place itself
between a statistical and a neural machine translation systems
on a task with not so large data.

Index Terms—Example-based machine translation, Numerical
methods

I. INTRODUCTION

Example-based machine translation (EBMT) is one of the
approaches to machine translation (MT). It is a data-oriented
approach. As such, it uses a bilingual parallel corpus as a
knowledge base. One of its streams (historical EBMT) is
characterised as translation by analogy. It relies on the way
language is supposed to be processed in the human brain in the
case of primary foreign language learning: no deep linguistic
analysis would be needed. EBMT by analogy is lazy learning
technique. Its advantage is that the training time is negligible,
whereas it is hours for statistical MT (SMT) or even days in
neural MT (NMT). NMT requires enormous amounts of data,
SMT less, EBMT even less. We choose a scenario where we
can honestly compare these three approaches with enough data
for all three approaches.

II. RELATED WORK

A. Case-based reasoning

Case-based reasoning (CBR) [1] consists in solving a new
problem by adapting the solution of an old problem. This
requires a case base of old problems with their solutions.

Collins and Way [3] show that EBMT is equivalent to the
implementation of CBR in the field of machine translation. To
translate a new sentence, similar sentences are looked for and
retrieved (retrieve step in [1]) altogether with their translations
(reuse in [1]). These translations are adapted to reflect the con-
tent of the sentence to translate (revise in [1]). These adapted
sentences are checked for validity in the target language before
being remembered (retain in [1]) and proposed as translations
of the sentence to be translated.

An equivalent view at the relationship between EBMT and
CBR [18] identifies three crucial steps: retrieval, adaptation
and validation. We follow this view in Sect. III.

The advantage of EBMT is that it dispenses with seeing
translation as a rather complex problem for the solution of
which features have to be determined and extracted in all
generality. It avoids the need for listing up all necessary
features or rules for a given language, if translations can be
obtained by merely modifying previous translation examples.

B. The development of EBMT

Example-based Machine Translation (EBMT) was initially
proposed by Nagao [22]. The claim is that when people
translate a simple sentence they do not perform any deep-
level grammatical analysis. Instead, they first divide the source
sentence into fragments, then translate these fragments into
the target language, and finally merge the fragments into one
sentence.

In [17] a “purest ever” EBMT system is described. It
also uses proportional analogy to capture corresponding but
possibly different structures across the source and the target
languages without using any grammar rule. The same approach
has been applied to the more limited problems of transcribing
proper names [12] or unknown words [4].

The European Association for Machine Translation (EAMT)
held international workshops on Example-Based Machine
Translation three times. These three workshops witnessed the
progress in the study of EBMT.

III. METHODS AND TECHNIQUES

In this paper, we examine the introduction of numerical
methods in the crucial steps for implementing EBMT as a CBR
system. For retrieval, we examine the influence of different
criteria in the selection of similar sentences. For adaptation,
we use a numerical technique which relies on neural networks.
For validation, we conduct an oracle experiment to evaluate
the possibilities of our approach.

A. Retrieval

In Nagao’s original proposal [22], a sentence is translated
by relying on another sentence that differs from it by only one
word. As a consequence, in any implementation of this model,



the first step is to retrieve sentences which differ the least from
the sentence to translate. It means retrieving sentences which
are as close as possible to the sentence to translate.

To achieve this, a criterion to compare sentences and
estimate their differences so as to be able to rank them
by increasing difference is required. By ranking sentences
according to differences, it will be possible to select the top
N similar ones.

We examine three different criteria to retrieve similar
sentences. Dice coefficient, Levenshtein’s edit distance and
sentence vector representations.

1) Dice coefficient: There exist similarity measures to com-
pare sets. The Dice coefficient is a variation of the Jaccard
index [9]. It compares two sets by counting the number of
elements in their intersection. To normalize this score, Jaccard
index takes the cardinality of the union of the two sets, while
Dice coefficient takes the sum of the cardinality of the two
sets. As the members in the intersection will be counted twice
a factor of two is introduced.

Applied to our problem of computing the similarity between
two sentences, we make a set out of a sentence s by consid-
ering the set of all its words. We note it by s. By doing so,
we forget about repetition of words and about their order in
the sentence. We note the cardinality of a set S by | S |. With
these notations, the Dice coefficient between two sentences s1
and s2 is defined in Eq. (1).

D(s1,s2) =
2×| s1∩ s2 |
| s1 |+ | s2 |

(1)

Jaccard index and Dice coefficient are similarities: the
higher, the more similar the two sentences. As said above,
they are normalized, hence their values range from 0 to 1.
They take a value of 0 when the intersection is the empty set.
They take a value of 1 when the two sets are equal. It should
be noticed that a similarity of 1 does not necessarily imply
that the two sentences are equal.

As an example of computation, consider the previous two
French sentences s1 = je veux remercier tout le monde. and s2
= je connais tout le monde ici. Their associated sets are:

s1 = {je, le,monde,remercier, tout,veux, .}
s1 = {connais, ici, je, le,monde, tout, .}

s1∩ s2 = {je, le,monde, tout, .}
(2)

The cardinalities are:

| s1 |= 7, | s1 |= 7, | s1∩ s2 |= 5. (3)

Hence, D(s1,s2) = (2×4)/(7+7) = 8/14≈ 0.57.
2) Edit distance: The Dice coefficient forgets about the

repetitions of words and their order in the sentence. Edit
distances can be used to measure how close or far two
sequences of words are, while taking into account repetitions
of words and their order. They directly measure by how many
words two sentences differ. In particular, the Levenshtein edit
distance between two sequences of words assigns a score
of 1 if only two words are substitute one for the other in

the sentences, which is the ideal case in Nagao’s model.
In all generality, the score of an edit distance is defined as
the smallest number of edit operations needed in order to
transform a sentence into another. The Levenshtein distance
considers three edit operations:

• insertion: a word is inserted somewhere in the sentence.
For instance, Je connais tout le monde.→ je connais tout
le monde ici. involves the insertion of the word ici.

• deletion: a word is deleted somewhere in the sentence.
This is the opposite of insertion. For instance, Je connais
tout le monde ici. → je connais tout le monde. involves
the deletion of the word ici.

• substitution: a word is substituted for another word. For
instance, Je connais tout le monde ici. → je connais tout
notre monde. involves the substitution of the word le for
the word notre.

The longest common sub-sequence (LCS) edit distance
considers only the two operations of insertion and deletion. In
this setting, a substitution is a deletion followed by an insertion
at the same place.

There exist well established algorithms to compute the
Levenshtein edit distance, for example [28]. There also exist
very fast algorithms to compute the LCS distance between two
strings, like [29] or [2]. With this, the LCS edit distance be-
tween the the previous two French sentences s1 and s2 can be
computed. Its value is d(s1,s2) = 4 because the transformation
of s1 into s2 involves at least two deletions and two insertions.

The smaller their edit distance, the closer two sentences.
Edit distances are true mathematical distances. Hence, by
the axiom of separability of mathematical distances, the edit
distance between two sentences is equal to 0 if and only if the
two sentences are equal.

3) Sentence vector cosine: The two previous criteria to
determine the similarity or the distance between sentences
are purely formal. They compare words without any reference
to the meaning of the words. In order to take into account
semantics, we propose to use sentence vector representations.
Sentence vector representations can be computed from word
vector representations [21]. A simple way to compute a
vector representation of a sentence is to just sum up all
vector representations of the words it contains. However, this
overestimates the weight of very frequent word. To avoid this
we use the scheme were each word is given a weight which
is proportional to its informativeness. The informativeness of
a word is computed as the self-information of the word, i.e.,
the negative logarithm of its frequency in a given corpus.

I(w) =− log f (w) (4)

The vector representation −→s of a sentence s made up of the
sequence of words w1w2 . . .wn is computed as in Eq. (5).

−→s =
n

∑
i=1

I(wi)×−→wi (5)

With this, the similarity between two sentences s1 and s2 is
computed as the cosine similarity between their vector repre-



sentations cos(−→s1 ,
−→s2 ). For the two previous French sentences,

the value of their similarity is 0.97.
The computation of such cosines is time-consuming. To

alleviate the problem, in our implementation, given a sen-
tence, we restrict the computation to the top 100 sentences
determined by edit distance. We re-rank these 100 sentences
according to their cosine similarity with respect to the given
sentence.
B. Adaptation

In Nagao’s model of EBMT, adaptation consists in solving
an analogical equation across two languages. This is illustrated
in the following French–English example.

je veux re-
mercier tout
le monde.

:
i want to thank
everyone. :: je connais tout

le monde ici.
: x

(6)
for which a possible solution is: i know everyone here. Let us
note As : At :: Bs : Bt the sentences in the order they appear
in the analogical equation above. With these notations, Bs is
the sentence in the source language to be translated into the
target language. The task of the EBMT system is to deliver
Bt , a translation of Bs. As and At are a pair of sentences in
the source and the target languages which are translations of
one another and which have been memorized in advance in
the case base. In our setting, As is retrieved from Bs by using
one of the three previous retrieval techniques introduced in
Sect. III-A.

Symbolic techniques to solve analogical equations between
strings of symbols have been proposed in previous works [26],
[13], [15], [16]. All these works assume that the four strings
of symbols share the same alphabet. For our setting where
the four strings of symbols are four sentences, i.e., four
sequences of words, this would assume that they all belong
to the same language. This is not the case in Nagao’s model
where the analogies cross the two languages at hand. There
are necessarily two different sets of words, one from each
language. For this reason, we need to explore new possibilities
to solve analogical equations that cross two languages.

All the previous works compare symbols (words in our
setting) only by equality. It is obvious that there will be
very little chance to find sentences that share a sufficient
number of equal words in practice. It seems more promising
to adopt a more flexible view when comparing words. For
that, we capitalize on recent or past achievements in vector
space models and SMT, i.e., we use monolingual distributional
semantics similarity matrices and bilingual soft alignment
matrices.

1) Monolingual Distributional Semantics Similarity Matri-
ces: A way to compare two words in the same language on the
level of meaning is to use distributional semantic vector space
models [27]. The similarity between two words is computed as
the cosine of their vector representations. For two sentences
in the same language any vector space model built by any
modern tool like GloVe [25] or Word2Vec [20] allows us to
compute the distributional semantics similarity between any
two words belonging to these two sentences.

All these similarities can be visualized in a matrix as shown
with the top left and bottom right two matrices in Fig. 1.
With the previous notations, these two matrices stand for the
two monolingual distributional semantics similarity matrices
of sentences As and Bs in the source language and sentences
At and Bt in the target language.

2) Bilingual Soft Alignment Matrices: As for the bilingual
comparison of two sentences which are translations of one
another, sub-sentential alignment is a well-established tech-
nique in SMT [23]. It relies on the computation of association
scores of translation probabilities between the words of two
language, as extracted from a corpus of aligned sentences in
the two languages. Various tools are available for this latter
task, like Anymalign [14], SuperAlign [7] or Fast Align [5] to
cite only a few. We use Anymalign [14] to get word translation
association scores, because of its speed and simplicity of
deployment.

Such translation associations scores can be visualized in
bilingual soft alignment matrices. Two examples are shown at
the bottom left and top right of Figure 1. With the previous
notations (see top of Sect. III-B), these two matrices stand
for the two bilingual soft alignment matrices between the
translation sentences As and At on one hand and sentences
Bs and Bt on the other hand.

3) Context Encoder for Analogical Equations: As men-
tioned above, given a sentence Bs to be translated, a sentence
As close to Bs which has been selected by any retrieval
technique and its translation At , the adaptation step of an
EBMT system in Nagao’s model consists in solving the
analogical equation As : At :: Bs : Bt of unknown Bt . From the
given of the problem, the monolingual distributional semantics
similarity matrix between As and Bs and the bilingual soft
alignment matrix between As and At are built. In Fig. 1, they
are the two top matrices. Solving the analogical equation is
equivalent to guess all the values in the bilingual matrix for Bs
and Bt and the monolingual matrix for Bs and Bt . In Figure 1,
these are the two bottom matrices. To form the sequence of
words in Bt is the job of an encoder.

We follow recent attempts at applying neural networks to
this problem [10]. In particular, we use a context encoder
which predicts two soft matrices from two given soft ma-
trices [30]. A context encoder is a generative adversarial
network (GAN). As any GAN, it consists of two parts a
generator and a discriminator. During training, the generator is
in charge of producing the matrices to fool the discriminator,
and the discriminator is in charge of detecting whether the
matrices the generator produced are reasonably real ones
or fabricated nonsensical ones. After training, when solving
analogical equations in the EBMT system, only the generator
is used. The difference between a standard GAN and a context
encoder lies in the loss function. In our context encoder, the
loss function is a linear combination of the standard loss
function used in GANs (see [8, p. 4 Algorithm 1]) and a
reconstruction loss which minimizes the mena square error
between the matrices guessed by the network and the ground
truth. The overall effect of the loss function is to maximize the
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Fig. 1. Monolingual distributional semantics similarity and bilingual soft alignment matrices for an analogy in Nagao’s EBMT model. Blacker cells stand
for higher similarity. The matrices on the top left and bottom right are monolingual distributional semantics similarity matrices. The matrices on the bottom
left and top right are bilingual sub-sentential alignment matrices.

continuity or consistency in appearance of the entire picture
made up of the top and bottom matrices. This is consistent
with the use of context encoders for reconstruction of images
or inpainting [24]. Here, the intuition is that it ensures that
the global shape of the four matrices seen as one image is
basically a cross of back pixels, as can be seen in Fig. 1.

In our experiments, we use a frozen model trained on more
than five thousands of analogical equations in morphology.
This model outputs two matrices of values which are respec-
tively interpreted as a bilingual matrix for Bs and Bt and
a monolingual matrix for At and Bt . The solution decoder
computes the sequence of words from the values in these
two matrices. At each position in Bt , we select the word in
the target language which minimizes the error in translation
association score or distributional semantics similarity with the
words in Bs and At as given by the values in the two matrices.

C. Validation

Over the last ten years, with the progress in statistical
machine translation (SMT) and neural machine translation
(NMT), the accuracy of EBMT, as measured by BLEU, has
been largely left behind. Table I reports scores obtained by
these three machine translation approaches in the WAT eval-
uation campaign1 last year for different machine translation
approaches from English into Japanese. This table makes it
clear that the translation scores of EBMT are much lower than
both SMT and NMT.

The goal of this paper is to assess how far we can expect
Nagao’s EBMT model to perform by introducting numerical

1Workshop on Asian Translation, http://lotus.kuee.kyoto-u.ac.jp/WAT/. Fig-
ures in Table I are copied from the page /evaluation/list.php?t=1&o=1 with
Juman [19] as the Japanese segmenter.

TABLE I
TRANSLATION ACCURACY AS MEASURED BY BLEU FOR DIFFERENT

MACHINE TRANSLATION APPROACHES IN JAPANESE–ENGLISH IN THE
WAT 2017 MACHINE TRANSLATION EVALUATION CAMPAIGN. THE BEST
SCORE OF THE BEST SYSTEM FOR EACH APPROACH IS REPORTED WITH
THE ABSOLUTE RANK OF THE SYSTEM AMONG ALL OTHER SYSTEMS.

MT Approach BLEU Score Rank

SMT 41.53 1
NMT 40.79 2
EBMT 33.06 27

methods in the retrieval and adpatation steps. For that, we per-
form an oracle experiment, i.e., we cheat during the validation
phase: we select the sentences using their BLEU score against
the reference translations. In an actual setting, this is of course
impossible as the reference translations are unknown.

For one sentence to be translated, we retrieve a certain num-
ber of similar examples and their translation from bilingual
corpus using the three techniques described in Sect. III-A.
In addition, we also consider a hybrid system. It takes the
best translation candidate from the three previous retrieval
techniques and keeps the best one. The overall average BLEU
score is then computed on these best translation candidates.

IV. EXPERIMENTS

A. Data

We choose French-English as the language pair. It is a
classical language pair for MT, not so simple, and not so
difficult, for MT. Reasonably high scores are usually obtained.
We use Word2Vec to pre-train word vector space models in
which we compute the distributional semantics similarity by

http://lotus.kuee.kyoto-u.ac.jp/WAT/
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=1&o=1


TABLE II
TRAINING WORD VECTOR MODELS

Languages French, English
Data WikiDumps (Version.20170601)
Tokens 100 million

Model Word2vec (CBOW model)
Dimensions 300
Window size 7
Minimun count 5

TABLE III
STATISTICS ON THE FRENCH-ENGLISH DATA OF THE TATOEBA CORPUS

(SENTENCES OF LENGTH LESS THAN 10 TOKENS)

French English
Training Test Training Test

Lines 109,390 1,200 109,390 1,200
Tokens 753,880 8,230 725,203 7,973
Types 3,924,245 42,845 3,305,809 36,256

classical cosine similarity. The training corpora are Wikidumps
from the 2017.06.01. Table IV-A gives the parameter setting.

We use the Tatoeba Corpus2 as our bilingual corpus. It
indeed fits EBMT because it is made up of repetitive sentences
which exhibit large similarities. We retain sentences of less
than 10 words in length and select 90 % of them for training
and the other 10 % for testing. We use the training part to
estimate word translation association scores using Anymalign.
Table III gives statistics on these data.

B. Results

We assess the three different techniques introduced in
Sect. III-A to find the N most similar sentences in an oracle
setting as described in Sect. III-C. Experiments are conducted
fro different values of N. The results are shown in Table IV.
We also compare our EBMT systems with two baseline
systems using standard technology: an SMT system (GIZA++,
Moses, KenLM, MERT) and an NMT system (OpenNMT).
In addition, we build a hybrid system which uses the three
techniques and retains the best candidates.

1) Comparison of different retrieval techniques and MT
approaches: Compared to nowadays standard evaluation data
sets which offer millions of aligned sentences, our data set is
relatively small. It is known that, on less data, neural machine
translation does not perform as well as statistical machine
translation [11]. Our experiment confirms this: the score of
the NMT system is lower than the score of the SMT system
by 5 BLEU points. Now, the scores of our oracle experiments
show that it is possible to reach a score between a baseline
SMT and a baseline NMT system using an EBMT system.

The surprising result is that the best retrieval technique
is Dice coefficient. This may mean that the highest number

2http://www.manythings.org/anki/

of exact words is an important criterion to produce useful
matrices for the adaptation step. Without surprise, the hybrid
system would consistently outperform each of the individual
three techniques it uses.

2) Influence of the number of retrieved examples: The
second experiment tests the influence of N when allowing
the system to use the top N retrieved examples. As already
reported for another EBMT system [17] which also uses
analogy as its core technique, the results show that using the
top first retrieved example does not necessary lead to the best
translation accuracy.

The main positive result is that when the value of N reaches
a certain value, our results can exceed those of NMT: 10 top
sentences for Dice coefficient and edit distances. Cosine would
need 40 top sentences. The hybrid system would be able to
beat both the NMT and the SMT baselines if it were able to
select the best translation using the top 10 retrieved examples.
This shows that EBMT is definitely a promising technique for
smaller data sets.

V. CONCLUSION

We introduced numerical methods in Nagao’s EBMT model,
precisely in the retrieval and adaptation steps according to the
description of EBMT as CBR. As for retrieval, we proposed
and assessed three different techniques to measure similarity.
As for adaptation, we introduced a neural network-based
technique to solve analogies between sentences that cross two
languages. This was made possible by using distributional
semantics similarity from vector space models and translation
association scores from SMT.

The main positive result is that when the value of N reaches
a certain value, our results can exceed those of an NMT
baseline. Using a hybrid system would even beat an SMT
baseline. However, there still exist bottlenecks. We list up only
two hereafter.

Firstly, our analogy solver makes a hypothesis on the length
of the solution, which is essentially wrong. It assumes that
the difference in lengths in the source language is equal
to the difference in length in the target language. The use
of a sentence length model like the one proposed to align
sentences from translated texts [6] should directly lead to a
better translation accuracy.

Secondly, the frozen context encoder model we used to
solve analogical equations between sentences did not match
our task. It was learned from data in morphology and as such
did not fit our data, which are of syntactic nature by essence.
Building a better fitted frozen model should also lead to better
a translation accuracy.

ACKNOWLEDGEMENTS

This research was supported in part by the Japanese Society
for the Promotion of Science (JSPS) under grant 18K11447
entitled: Self-explainable and fast-to-train example-based ma-
chine translation using neural networks.



TABLE IV
BLEU SCORES FOR DIFFERENT VALUES OF N FOR TOP N RETRIEVAL AND FOR THE THREE DIFFERENT RETRIEVAL METHODS. BOLDFACE SCORES ARE

THE BEST ONES ON EACH ROW FOR OUR SYSTEMS

N 1 10 20 30 40 50 60 70 80 90 100

Dice coefficient 44.70 61.87 62.38 62.75 62.98 63.13 63.30 63.47 63.64 63.79 63.83
Edit distance 32.67 60.13 61.69 62.30 62.65 63.02 63.21 63.41 63.52 63.52 63.58
Sentence vector cosine 36.44 54.39 57.82 59.58 60.84 61.90 62.83 63.20 63.42 63.50 63.58

Hybrid system 52.90 65.58 64.22 64.56 64.72 64.87 64.98 65.09 65.17 65.29 65.37

SMT baseline 65.23
NMT baseline 59.87
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