
Context Encoder for Analogies on Strings

Tianjing Zhao
Graduate School of Information,

Production and Systems,
Waseda University

bilibilimisaka@akane.waseda.jp

Yves Lepage
Graduate School of Information,

Production and Systems,
Waseda University

yves.lepage@waseda.jp

Abstract

We propose a model based on context en-
coder to solve formal analogies on strings like
aaabbbccc : aaaabbbbcccc :: abc : x ⇒
x = aabbcc or ubid : tubid :: ofjid : x
⇒ x = tofjid. As a context encoder
model, it consists of a generator and a dis-
criminator. The generator attempts at generat-
ing the result of an analogical equation, while
the discriminator attempts at discriminating
solutions coming out of the generator against
the real solution of the analogical equation.
We conduct experiments on publicly available
data sets to compare the performance of our
model with a previously published method de-
signed for the same task. Our results show
slight increases in accuracy, in comparison to
a fully connected neural network architecture.

1 Introduction

To design machines or programs capable of solv-
ing analogical equations is still a challenge for arti-
ficial intelligence. There are several levels on which
analogies can be solved:

• world knowledge level:
England : English :: Lichtenstein : x ⇒
x = German;

• semantic level:
man : woman :: king : x ⇒ x = queen;

• grammatical level:
I play : she plays :: I am : x ⇒ x = she is;

• morphological level:
cat : cats :: child : x ⇒ x = children.

As for semantic analogies, the work in (Turney
and Littman, 2005; Turney and Pantel, 2010) has
shown that a computer program can reach average
human performance in the task of solving SAT ques-
tions. Nowadays, word embeddings are used to ad-
dress this problem (e.g. (Drozd et al., 2016)).

The example analogies given above are all irregu-
lar in form. However, a number of analogies which
hold at these same levels may exhibit regularities in
the word forms themselves.

• England : English :: Poland : x ⇒ x =
Polish;

• man : woman :: policeman : x ⇒ x =
policewoman;

• I play : she plays :: I accept : x ⇒ x =
she accepts;

• cat : cats :: dog : x ⇒ x = dogs.

Such regularities account for a good part of lan-
guage productivity, i.e., the creation of new word
forms from old ones. The regularities encoun-
tered in such new word forms can be described
in terms of prefixing, suffixing, parallel infixing
and circumfixing. This can be reduced to funda-
mental edit operations found in defining edit dis-
tances (Levenshtein, 1966): insertion, deletions and
substitutions. With such a formalisation, the prob-
lem becomes purely formal, and can be illustrated
with examples not linked to any language, like:
aaabbbccc : aaaabbbbcccc :: abc : x ⇒ x =
aabbcc or lbmc : lvmbjc :: nvtkje : x ⇒ x =
nvtbjkje.

The previous English examples (and those in the
figures in the rest of this paper) may leave the im-
pression that the problem is in the reach of reg-
ular expression techniques. However, in all gen-
erality, the problem is more complex as already
illustrated with the last two formal examples of
the previous paragraph. It involves parallel infix-
ing, a phenomenon necessary for the description of
Semitic languages (e.g., Hebrew: mélex : mlaxı́m ::
dérex : draxı́m; see more examples in Table 3). Par-
allel infixing is also ubiquitous when the strings are
sentences. This actually places the general problem
in the world of context-sensitive languages.

The purpose of this paper is to propose a method
to solve analogical equations between strings on the
level of form only but in all generality. We first in-
troduce the representation adopted in our method.
We then give the necessary background knowledge
concerning generative adversarial nets and context
encoder networks. Based on this, we propose and
design a context encoder model to solve analogical
equations. The last part describes experiments on
well-established data and how the proposed model
behaves when varying some of its hyper-parameters.
We also compare the results of our model with pre-
vious models.

2 Approach and Processing Steps

We design a context encoder model to solve analog-
ical equations between strings, A : B :: C : D, that
we solve for D. As for the general flow of data,
we follow (Kaveeta and Lepage, 2016). The main
difference of our work with this previous work is
described in Sect. 2.5. Our contribution lies in the
neural network architecture adopted. There also ex-
ists a second difference in the post-processing step;
it will be mentioned in Sect. 2.4.

Our proposed network does not directly solve the
equation. The input to the network is not the string
triple (A,B,C) itself, but two alignment matrices
M(A :B) and M(A :C). Such alignment matrices
are easy to build. It is of course possible to suggest a
recurrent neural network model that would take the
concatenation of the three strings as input and would
output the fourth string directly. However, we are
concerned with future extensions and want to leave
the door open to the direct use of alignment matrices

A,B,C
law : laws :: office : x

alignment
y alignment

M(A :B),M(A :C)

w
a
l

s w a l o f f i c e

matrix transformation
y matrix transformation

MAB,MAC

neural network
y neural network

MDB,MDC

back transformation
y back transformation

M̃(D :B), M̃(D :C)
s w a l o f f i c e

o
f
f
i
c
e
s

decoding
y decoding

D
offices

Figure 1: Sketch of the data flow adopted to solve
A : B :: C : D for D in the previous approach reported
in (Kaveeta and Lepage, 2016) and in our approach.

as found, for example in machine translation with
sub-sentential alignments.

In order to meet the constraints of neural net-
works, especially fully connected networks, trans-
formations are needed in a pre-processing step to
obtain fixed-size square matrices, MAB and MAC .

The task of the network is to output two matri-
ces MDB and MDC from the two input transformed
alignment matrices MAB and MAC . These output
matrices are of the same type as transformed matri-
ces.

They are transformed back into two matrices
M̃(D :B) and M̃(D : C) in a first post-processing
step. We interpret these two matrices as alignment

o f f i c e

s

e

c

i

f

f

o

Figure 2: Alignment matrixM(office :offices) for the two
strings office and offices. The black cells are the match
points, i.e., the places where the same character is to be
found in the two strings.

matrices between D and B, and D and C respec-
tively, but they are not perfect in terms of alignment:
the values are not discrete (0 or 1) as they range from
0 to 1, and some values may point simultaneously to
different characters for the same position. This ex-
plains the different notation used: M̃(D :B) instead
ofM(D :B). We call such matrices quasi-alignment
matrices.

These two quasi-alignment matrices are finally
decoded into a string candidate D in a second post-
processing step. Note however, that, because the two
quasi-alignment matrices M̃(D :B) and M̃(D :C)
are not perfect alignment matrices, there is a need
for a dedicated algorithm.

Fig. 1 pictures the overall flow of data. The fol-
lowing sections explain each step in the process.

2.1 Alignment Matrices
An alignment matrix between two strings of char-
acters shows the match points, i.e., the positions at
which equal characters are to be found in the two
strings. Figure 2 shows the alignment matrix be-
tween the strings office and offices (example in in-
flectional morphology, noun - regular plurals, from
BATS 3.0 data set (Gladkova et al., 2016)).

2.2 Pre-Processing Step: Interpolation
Alignment matrices between strings of different
lengths obviously exhibit different lengths. Fully
connected layers of neural networks require fixed-
dimension input. For our problem, the use of fully
connected layers requires that alignment matrices of
different lengths be cast into fixed-size matrices be-
fore being fed to such network layers.

l

a

w

s w a l o f f i c e

s

e

c

i

f

f

o

⇒

⇐

Figure 3: Linear matrix interpolation for the analogy
law : laws :: office : offices. Original alignment matrices
on the left; interpolated square matrices of size 5 × 5 on
the right. On the left, the cells take only two discrete val-
ues, 0 or 1, represented by the white or black colours.
The cells on the right take real values in the range [0, 1],
hence the various shades of gray

To allow for comparison, we use the same four in-
terpolation methods as (Kaveeta and Lepage, 2016)
to transform matrices of different lengths into fixed-
size square matrices. Figure 3 illustrates the result
of applying one of these methods, linear interpola-
tion, on the four alignment matrices of the example
analogy law : laws :: office : offices. On the right of
the figure, the two matrices at the top are the two
fixed-size matrices input to a fully connected layer
of a neural network; the two matrices at the bottom
are the expected output of the neural network.

With the adopted approach, the flow of the data
during the resolution of the analogical equation
law : laws :: office : x ⇒ x = offices. is as
follows. The top left matrices are transformed into
the top right matrices. The neural network outputs
the two bottom right matrices which are transformed
back into the two left bottom matrices, from which
the (vertical) string offices is decoded. Figure 3 is an
ideal picture, because, e.g., the bottom left matrices
obtained from the bottom right matrices may contain
misplaced or inconsistent match points.

2.3 First Post-Processing Step: Back-Transfor-
mation

The two matricesMDB andMDC output by the net-
work are back transformed into quasi alignment ma-
trices so as to obtain matrices of the sizes fitted to
the lengths of strings B, C and D. To do so, we
just apply the same interpolation technique to each
of the matrices MDB and MDC to obtain the ma-
trices M̃(D : B) and M̃(D : C) with the desired
lengths as constraints.

2.4 Second Post-Processing Step: String
Decoder

For an analogical equation A : B :: C : D where D
is the unknown, (Lepage, 1998; Lepage, 2017) show
that the properties of analogies of commutation be-
tween strings of symbols imply that the following
features of the solution D can be computed in ad-
vance.

• The length of the solution D:

| D | = | B |+ | C | − | A | (1)

Here, | S | stands for the length of a string S.

• The number of occurrences of each of the char-
acters in D:

| D |c = | B |c + | C |c − | A |c, ∀c (2)

Here | S |c denotes the number of occurrences
of character c in string S. Equation (2) is also
trivially true for characters which do not appear
in any of the strings as 0 = 0 + 0− 0.

• The set of characters in D, deduced from the
previous feature, as it is the set of characters c
for which | D |c 6= 0.

We make the choice of this interpretation of anal-
ogy. With this choice, the task of the string decoder1

reduces to choose the right position of each charac-
ter in D based on the knowledge of the quasi align-
ment matrices M̃(D : B) and M̃(D : C) plus, of
course, the knowledge of the position of each char-
acter in strings B and C. An algorithm for this task
has been proposed in (Kaveeta and Lepage, 2016,
Algorithm 1). To select a character for a given posi-
tion i in D, the algorithm relies on a specific crite-
rion.

We use the same algorithm, but with a different
criterion. This constitutes the second difference with
this previous work. In the previous work, the char-
acter at position i in D is selected on the basis of
the sum of the contributions of all possible positions
where the candidate character is found in B and C.
This is defined by Eq. (3).

1Not to be confused with the decoder in the encoder-decoder
architecture.

V [c, i] =
∑

j/B[j]=c

M̃(D :B)[i, j]

+
∑

j/C[j]=c

M̃(D :C)[i, j]
(3)

We think that the selection should preferably
identify only one point, either from B or from C,
the one which has the largest contribution to charac-
ter c for this given position inD. For this reason, our
formula picks up the maximal value. This is defined
in Eq. (4).

V [c, i] = max(max
j/B[j]=c

M̃(D :B)[i, j],

max
j/C[j]=c

M̃(D :C)[i, j])
(4)

We just replace the criterion given in Eq. (3) by
the one in Eq. (4) in the string decoder of (Kaveeta
and Lepage, 2016). The algorithm iteratively scans
each position i in D from the beginning to the end.
For a position i, it selects the character c with the
highest score V [c, i]. The number of occurrences of
the chosen character c is decreased by 1 to prevent
any further use as soon as it reaches 0. The next
position i+ 1 is considered in turn.

2.5 Related Work: Context Encoder
In (Pathak et al., 2016) a generative adversarial net-
work (GAN) is customised into a network dedicated
to feature learning for inpainting. This neural net-
work, called a context encoder, is used to reconstruct
the missing part of an image by learning the fea-
tures which match a corresponding image with the
removed part of the image. The model used con-
sists of an encoder-decoder pipeline and several loss
functions. The encoder-decoder pipeline is divided
into three components.

The first component is the encoder, which en-
codes the input image into a more status space to ob-
tain a latent feature representation. For the encoder
model, they use a layer derived from AlexNet that
contains only the convolutional and pooling parts.
This is because AlexNet is suitable for classification
tasks, but their task is not a classification task.

The second component connects the encoder and
the decoder. They call it the channel-wise fully con-
nected layer. Its main purpose is to propagate the

d

o

l

l

a

r

s r a l l o d p l a y

?

?

?

?

?

(a) Input matrix

d

o

l

l

a

r

s r a l l o d p l a y

s

y

a

l

p

(b) Reference matrix

d

o

l

l

a

r

s r a l l o d p l a y

s

y

a

l

p

(c) DNN-based result

d

o

l

l

a

r

s r a l l o d p l a y

s

y

a

l

p

(d) CNN-based result

Figure 4: Given the four matrices of an analogical equa-
tion where the two bottom ones are missing as in (a), a
human can fill out the two bottom missing matrices cor-
rectly as in (b). The result of automatically filling the two
bottom matrices using our DNN-based context encoder
and using our CNN-based context-encoder are shown in
(c) and (d).

feature map information, so its role is to connect the
parameters of the encoder and the decoder. Origi-
nally their idea was to use a fully connected layer,
but if a fully connected layer was used, this would
lead to an explosion in the number of parameters
leading to intractable training time. Instead, they
use a convolutional layer. In our experiments, we
also tried using a fully connected layer, but we aban-
doned for the same reason.

The third component is the decoder. It performs
the reconstruction by upsampling the feature repre-
sentation in the low dimensional space, so as to re-
store to the image size. This is done by deconvolu-
tion and upsampling.

Figure 4 shows that our task may be considered
similar to the task in (Pathak et al., 2016). The
four alignment matrices between the four terms of
an analogy can be considered an image of black and
white pixels. For an analogical equation where the
last term D is unknown, the two bottom matrices
are unknown. This is similar to the missing part in
an image.

The loss function in (Pathak et al., 2016) is a joint
loss, made up of two parts, an adversarial loss (adv)

and a reconstruction loss (rec), each weighted by its
own weight (λadv and λrec, both between 0 and 1),
as defined by Eq. (5).

` = λadv × `adv + λrec × `rec (5)

We adopt this joint loss scheme for our problem.

2.5.1 Adversarial Loss
For the problem of learning features for image in-

painting, in (Pathak et al., 2016), a simplification of
the loss function found in standard GANs (Good-
fellow et al., 2014) is used, because GANs easily
make the difference between generated and ground
truth images based on boundary discontinuities. In
our setting, this problem does not exist because the
boundary extends over the entire horizontal size of
the matrices and because the boundary does not ex-
hibit specific discontinuities very different from the
ones found elsewhere in the alignment matrices. For
this reason, on the contrary to (Pathak et al., 2016),
we use the standard loss function found in GANs2.
It is defined by Eq. (6) as a logistic likelihood where
a ground truth sample x is compared to a generated
sample z created from a noise distribution by the
generator G. The two-player game between the dis-
criminator D and the generator G is expressed in the
formula by the minmax dilemma.

`adv = min
G

max
D

(Ex∈X [logD(x)]

+Ez∈Z [log(1−D(G(z))])
(6)

In standard GANs, Z represents a continuous
noise distribution. In our setting, Z is not a noise
distribution but a random sampling over the possi-
ble solution alignment matrices found in the train-
ing set. Rather than discriminating over a continu-
ous distribution space as in standard GANs, in our
setting, the discriminator performs a selection over
a discrete space.

2.5.2 Reconstruction Loss
The role of the reconstruction loss function is to

compare the reconstructed part of the image with the
ground truth. In (Pathak et al., 2016), they tried the
L1 and the L2 norms of the differences between the

2We also experimented with the adversarial loss function
in (Pathak et al., 2016), for no observed improvement.

Figure 5: Architecture of our CNN-based generator

reconstructed part and the ground truth part of the
original image. The L2 norm delivered better results
for their problem. We experimented with the L2

norm and also with a classical mean squared error
(MSE) scheme. We found that the MSE loss func-
tion leads to slightly better results and adopted it for
this reason. In Equations (7) and (8), F stands for
the function realised by the generator-discriminator
pipeline, M is the ground truth matrix and N is its
size.

MSE(F(M),M) =

1

N2

N∑
i=1

N∑
j=1

(F(M)[i, j]−M [i, j])2

(7)

`rec =
1

2
(MSE(M̃(D :B),M(D :B))

+MSE(M̃(D :C),M(D :C)))
(8)

3 Proposed Method

Any kind of networks can be used for the genera-
tor and the discriminator, but not any combination
of two networks is suitable for any task. Hereafter,
we consider which network for the generator and the
discriminator is suited to our task.

3.1 Generator of Quasi-Alignment Matrices
We propose two different generators to generate two
output alignment matrices from the input alignment
matrices.

The first one is a deep neural network (DNN)
auto-encoder, with three fully connected layers, that
directly tries to generate the output alignment matri-
ces. It is illustrated in Fig. 6.

The second one is a deep convolution neural net-
work (CNN) auto-encoder. It is illustrated in Fig. 5.

We would conjecture that the analytic features of a
CNN should deliver better performance thanks to the
extraction of local features, while the softmax lay-
ers should be able to capture global alignment corre-
spondences. This conjecture will be inspected when
analyzing the experiment results in Sect. 4.3.

32 x 32 matrix X 2

node = 128, fully connected layer

... ...

fully
conn
ecte
dnode = 64, fully connected layer

node = 128, fully connected layer

Matrix transformation

generated matrices

Figure 6: Architecture of our DNN-based generator

3.2 Adversarial Discriminator

As input, the discriminator accepts output alignment
matrices, i.e., images of gray pixels generated by the
generator, and real matrices of white and black pix-
els (match points) obtained from real data. Our dis-
criminator is a traditional CNN, trying to make true-
false judgments on the input matrix, i.e., it yields
a probability between 0 and 1. Fig.7 shows the
architecture of our discriminator. Thanks to back-
propagation, the difference in nature of the gen-
erated output alignment matrices and ground truth
alignment matrices will drive the generator to gen-
erate sharper and sharper matrices.

Figure 7: Architecture of our discriminator

4 Experiments

4.1 Data Set

For full comparison with the previous work reported
in (Kaveeta and Lepage, 2016), we use the same
data and the same measurement protocol. The data
set was selected from different sources. Formal
analogies were extracted automatically by checking
the constraint on character occurrence number com-
bined with a criterion on edit distance equality.

In total, there are 5,793 analogies. A majority are
in English and German, but a certain number of them
come from 11 other languages. They include exam-
ples of parallel infixing (Arabic, Hebrew, German)
and circumfixing (Malay). Example analogies from
the data set are shown in Appendix in Table 3. The
average length of a string in the data set is 7.0± 2.6
characters.

In all experiments, to compare with previous
work, we use 10-fold cross validation, i.e., the data
set is randomly divided into ten slices of 10 % of the
total size each, and one slice is used to test a system
trained on the remaining nine slices. The average
over these ten experiments is reported.

4.2 Evaluation Metrics

4.2.1 Training Time
As training times are a concern in training neural

networks, we report training times for all the vari-
ants of our proposed model. They were obtained
on a 4-core i7-3770 processor at 3.4 GHz and 4 Gb
memory.

4.2.2 Loss
We report the values taken by the loss function

to ensure that our results meet our objectives. These
values reflect the ability of the neural network to pre-
dict the correct alignment matrices by comparing the

output with the reference ground truth.
As mentioned in Sect. 2.5, the loss function for

the generator is a Mean Squared Error loss function.
For the adversarial discriminator, we use a Binary
Cross-Entropy loss function.

4.2.3 Accuracy
The accuracy in solving analogical equations is

computed as the ratio of the number of correct an-
swers produced by the model to the total number of
analogical equations. A correct answer is an exact
match against the ground truth answer.

Accuracy =
of correct answers

total # of test samples
× 100% (9)

4.3 Experimental Results
Our baseline for comparison is the model reported
in (Kaveeta and Lepage, 2016). It shares the same
general flow of data but it uses a simpler model for
the core network: a fully connected neural network.
The second difference is a different selection scheme
for characters in the string decoder (see Sect. 2.4).

4.3.1 Influence of Matrix Size on Accuracy
Table 1 gives the result of experiments in varying

the size of the fixed-size matrices, input to the net-
work.

The results show that our proposed model sur-
passes the results of the baseline system in accuracy.
As for training times, they are comparable with the
baseline, except for the largest matrix size, for which
our model is twice as fast as the baseline. The loss
values for our model seem slightly higher but it is
not sure whether the values are directly comparable.

The results do not clearly confirm our conjecture
mentioned in Sect. 3.1: the CNN-based context en-
coder used in the generator part does not always de-
liver better accuracy than the DNN-based one.

Because the average string length in the data is
7.0 ± 2.6 characters, it is natural that the larger the
matrix size used, the higher the accuracy. It is also
natural that a matrix size of only 4 × 4 delivers low
accuracy (around or less than 20 %). A matrix size
of 8× 8 allows the models to cross 50 % accuracy.

4.3.2 Influence of Interpolation Method on
Accuracy

The results in Table 1 were obtained using the
bicubic interpolation method (see Sect. 2.2). The

Table 1: Comparison of our method for training times
and accuracy with a baseline method when the size of the
matrices varies. All reported results use 10-fold cross-
validation

matrix size
Training

time
(m:s)

Loss
Accuracy

(%)

CNN-based Context
encoder (our method)

4 x 4 5:05 0.097 21.99
8 x 8 5:14 0.088 69.72

16 x 16 5:47 0.093 84.91
32 x 32 8:13 0.080 89.62

DNN-based Context
encoder (our method)

4 x 4 5:11 0.108 22.07
8 x 8 5:23 0.092 66.18

16 x 16 6:03 0.113 81.49
32 x 32 8:17 0.094 86.17

Baseline: Fully con-
nected NN (copied
from (Kaveeta and
Lepage, 2016))

4 x 4 4:53 0.013 16.75
8 x 8 5:34 0.017 67.18

16 x 16 7:12 0.024 79.10
32 x 32 14:03 0.035 84.11

purpose of Table 2 is to measure the influence of the
interpolation method on accuracy. The results in this
table were obtained using a matrix size of 16× 16.

The results confirm that the bicubic method per-
forms the best among the four interpolation methods
we tried, as already reported in (Kaveeta and Lep-
age, 2016). Bicubic interpolation is often chosen for
interpolation in image re-sampling, for the reason
that compared with bilinear interpolation, it consid-
ers more pixels. For our problem of solving analogi-
cal equations, this shows that our model prefers con-
figurations where more pixels are taken into account
around a given pixel.

It may be observed that the change in interpola-
tion method does not lead to dramatic changes in
training times. By contrast with Table 1, the loss
values in this experiment are more affected by the
variation in re-sampling methods. They seem better
correlated with accuracy.

5 Conclusion

We proposed a context encoder model to solve for-
mal analogical equations between strings of sym-
bols. We chose to use alignment matrices to rep-
resent the input strings instead of feeding the in-
put strings themselves. This leaves the door open
to the resolution of more complex problems using,
e.g., sub-sentential alignment matrices in machine
translation. The output string is obtained through
a string decoding post-processing of the two output
alignment matrices predicted by our model.

Table 2: Same as Table 1, but when using various re-
sampling methods. The matrix size is 16× 16. Again, all
reported results use 10-fold cross-validation

Interpolation
method

Training
time
(m:s)

Loss
Accuracy

(%)

CNN-based Context
encoder (our method)

bicubic 5:25 0.060 88.58
linear 5:47 0.093 84.91
bilinear 5:18 0.050 84.11
nearest 5:11 0.120 76.17

DNN-based Context
encoder (our method)

bicubic 5:18 0.067 85.87
linear 6:03 0.113 81.49
bilinear 5:14 0.078 81.11
nearest 5:17 0.144 69.66

Baseline: Fully con-
nected NN (copied
from (Kaveeta and
Lepage, 2016))

bicubic 6:40 0.019 78.24
linear 7:12 0.024 79.10
bilinear 7:10 0.015 72.71
nearest 6:56 0.039 67.88

Our model was inspired by work in image inpaint-
ing. In such a context encoder model, the loss func-
tion is a linear combination of an adversarial loss
and a reconstruction loss. Our adversarial loss func-
tion is the standard loss function of GANs while
the reconstruction loss function is simply a mean
squared error scheme.

We tested two possible neural network architec-
tures for the generator part: fully connected and
convolutional neural networks. As fully connected
neural networks require fixed-size input, we tested
different interpolation techniques to transform the
alignment matrices into fixed-sized square matrices
to be fed into the network.

Experimental results show that our model outper-
formed a baseline model based on a fully-connected
network architecture. We found that the use of a
larger interpolated matrix size led to better accu-
racy. The best accuracy was achieved when using
the bicubic interpolation method.

Acknowledgments

This work was supported in part by the Japanese
Society for the Promotion of Science (JSPS)
under grand-in-aid no 18K11447 entitled “Self-
explainable and fast-to-train example-based ma-
chine translation using neural networks”.

A Example Data

Table 3: Example analogies from the data set used in our
experiments

Language Example analogy

Arabic kalb : kulaib :: masjid : musaijid
kataba : kātib :: sakana : sākin

Chinese 工程 :工程师 ::理发 :理发师
今年 :今天 ::明年 :明天

English law : laws :: office : offices
fixed : fixedness :: serious : seriousness

French dues : indu :: nées : inné
logique : logiciel :: ludique : ludiciel

German fliehen : er floh :: schließen : er schloß
sprechen : ihr sprächet :: nehmen : ihr nähmet

Hebrew iahmod : mahmād :: ia‘abor : ma‘abār
mélex : mlaxı́m :: rések : rsakı́m

Japanese 痛い :痛む ::親しい :親しむ
飛びます :飛ぶ ::選びます :選ぶ

Latin amo : amas :: oro : oras
facio : conficio :: capio : concipio

Malay beristeri : isteri :: berladang : ladang
keras : mengeraskan :: kena : mengenakan

References
Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-

suoka. 2016. Word embeddings, analogies, and
machine learning: Beyond king - man + woman =
queen. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 3519–3530. The COL-
ING 2016 Organizing Committee.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embeddings:
what works and what doesn’t. In Proceedings of the
2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2016), pages 8–
15.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information pro-
cessing systems, pages 2672–2680.

Vivatchai Kaveeta and Yves Lepage. 2016. Solving
analogical equations between strings of symbols using
neural networks. In ICCBR Workshops, pages 67–76.

Yves Lepage. 1998. Solving analogies on words: an al-
gorithm. In Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics and
17th International Conference on Computational Lin-
guistics (COLING-ACL 1998), volume 1, pages 728–
734. Association for Computational Linguistics.

Yves Lepage. 2017. Character–position arithmetic for
analogy questions between word forms. In Proceed-
ings of the Computational Analogy Workshop at the
24th International Conference on Case-Based Reason-
ing (ICCBR-17), pages 17–26, Trondheim, Norway,
August.

Vladimir Iossifovitch Levenshtein. 1966. Binary codes
capable of correcting deletions, insertions and rever-
sals. Soviet Physics-doklady, 10(8):707–710, Febru-
ary.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue,
Trevor Darrell, and Alexei A Efros. 2016. Context
encoders: Feature learning by inpainting. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2536–2544.

Peter D. Turney and Michael L. Littman. 2005. Corpus-
based learning of analogies and semantic relations.
Machine Learning, 60(1–3):251–278.

Peter Turney and Patrick Pantel. 2010. From frequency
to meaning: Vector space models of semantics. Jour-
nal of Artificial Intelligence Research, 37:141–188.

