
Leveraging the Advantages of Associative
Alignment Methods for PB-SMT Systems?

Baosong Yang and Yves Lepage??

IPS, Waseda University
yves.lepage@waseda.jp

Abstract. Training statistical machine translation systems used to re-
quire heavy computation times. It has been shown that approximations
in the probabilistic approach could lead to impressing improvements
(Fast align). We show that, by leveraging the advantages of the asso-
ciative approach, we achieve similar, even faster, training times, while
keeping comparable BLEU scores. Our contributions are of two types: of
the engineering type, by introducing multi-processing both in sampling-
based alignment and hierarchical sub-sentential alignment; of modeling
type, by introducting approximations in hierarchical sub-sentential align-
ment that lead to important reductions in time without affecting the
alignments produced. We test and compare our improvements on six
typical language pairs of the Europarl corpus.

1 Introduction

Sub-sentential alignment, computed based on word associations, is the core of
the training process in Phrase-based Statistical Machine Translation (PB-SMT).
These two processes are crucial for the accuracy of translation, but they are also
very time-consuming.

The IBM models [2] and the grow-diag-final-and heuristic are the most
popular approach. They have been integrated as the GIZA++ tool [16], or
MGIZA++ [6] for a parallel implementation, in the PB-SMT toolkit Moses1.
A log-linear re-parameterisation of IBM Model 2 has been implemented in Fast
align2 [4]. It led to much faster training times.

IBM models are probabilistic models, so that the optimisation process re-
quires the knowledge of the entire parallel corpus to estimate the parameters
[15]. On the contrary, associative methods, as characterised in [5], do not rely
on a global alignment model, but use local maximisation so that each sentence

? This paper is a part of the outcome of research performed under a Waseda University
Grant for Special Research Projects (Project number: 2015A-063).

?? Thanks to Chonlathorn Kwankajornkiet from Chulalongkorn University, Thailand,
for her contribution in implementing the C core component of Cutnalign during a
training period at IPS, Waseda University.

1 http://www.statmt.org
2 http://github.com/clab/fast_align

pair can be processed independently. Various criteria may be used like Dice
coefficient, cosine, mutual information [5] or likelihood ratio [3, 17].

Sampling-based multilingual alignment, introduced in [14], and implemented
as Anymalign3, is an associative method for the computation of word associa-
tions. The method repeatedly draws random (mainly small) sub-corpora from
the parallel corpus and obtains occurrence distributions of word pairs (or short
word sequence pairs) within each sub-corpus so as to ultimately produce a word
association table.

Bilingual hierarchical sub-sentential alignment, introduced in [13], and im-
plemented as Cutnalign4, is an associative method to compute sub-sentential
alignments. It processes parallel sentences using a recursive binary segmenta-
tion of the alignment matrix. It yields performance comparable with that of
state-of-the-art methods [7].

Figure 1 describes the training process which combines these two associa-
tive methods: it replaces GIZA++ and the grow-diag-final-and heuristic: Cutn-
align uses word associations produced by Anymalign as input, and outputs sub-
sentential alignments. The relevant script in Moses5 then extracts phrases from
sub-sentential alignments.

!
! !

!
!
!
!
!

!
!
! !
!

!
!
!
!
!
!
!
!
!

!
!
!

Anymalign! !

Parallel!
corpus!

Phrase!
extraction!Word!

associations!

Phrase!
table!

Sub9sentential!
alignment!Cutnalign!

Fig. 1. Combination of two associative methods, Anymalign and Cutnalign, to obtain
phrase tables from a parallel corpus

We present various types of improvements in the current implementations of
the two above-mentioned associative methods that make them competitive with
recent probabilistic approaches.

– improvement of the engineering type: we exploit the essence of associative
methods and introduce multi-processing in both sampling-based alignment

3 https://anymalign.limsi.fr/
4 Thanks to the authors for providing the source code.
5 train-model.perl --first step 4

and hierarchical sub-sentential alignment so as to trivially accelerate the
overall alignment process. To compare with baseline systems, which are im-
plemented in C/C++, in a more fair way, we also reimplement the core
component of Cutnalign in C;

– improvement of the modelling type: we propose approximations to accelerate
some decisions and a method to reduce the search space in hierarchical sub-
sentential alignment so that additional speed-ups are obtained.

The rest of this paper is organized as follows: Section 2 rapidly describes the
engineering improvements obtained by eliminating unnecessary computations
and by introducing multi-processing. Section 3 explains and justifies in practice
three practical and empirical improvements in hierarchical sub-sentential align-
ment. Section 4 gives an incremental evaluation of our work and a comparison
with state-of-the-art methods on a series of machine translation experiments.

2 Acceleration thanks to Re-Engineering

2.1 Elimination of Unnecessary Computations

The first implementation of Cutnalign made use of a different matrix than the
sentence pair matrix to accelerate computation. In that matrix, each cell con-
tains the sum of all translation strengths of the block starting in the top left
corner of the sentence pair matrix up to that cell, i.e., each cell (i, j) contains
W (X0...i, Y0...j). As the process is recursive, the computation of W for many
blocks inside the matrix is required. For a block (Xi1...i2 , Yj1...j2) extending from
i1 to i2 and from j1 to j2, its corresponding W (Xi1...i2 , Yj1...j2) is easily computed
as W (X0...i2 , Y0...j2)−W (X0...i1 , Y0...j1), thus saving computation time.

For generalisation purposes and readability of coding, the code introduced
the factor W (X0...0, Y0...0) to be subtracted when computing W. This was hidden
in one elegant general case by the use of general indices, that unfortunately could
take the value 0 at some point during computation. As W (X0...0, Y0...0) is equal
to 0, unnecessary subtractions by 0 were performed.

We isolated and rewrote nine different sub-cases (to the detriment of the
aesthetics of the code) so as to eliminate such unnecessary subtractions. Much
to our surprise, this led to an acceleration by a factor of approximately 40 times.
The line labelled S in Table 2 reports such improvements.

2.2 Multi-Processing

With the ubiquity of multi-processor systems, any software tool should allow
optimal use of computer resources whenever possible. Associative methods make
it possible by construction.

Word Associations Anymalign draws random sub-corpora from the training
corpus, and computes the occurrence distribution profiles for all words over all

sentence pairs in each sub-corpus. Consequently, the process for each sub-corpus
is independent. Thanks to this characteristic, no data needs to be transferred
for synchronisation, thus avoiding any time consumption overhead usually ob-
served when I/O operations are extensively used. The sizes of the sub-corpora
are randomly drawn according to a specific distribution. Consequently, sampling
of sizes can also be performed independently in different sub-processes, without
affecting the general behavior in any way. Multi-processing is thus done by hav-
ing each sub-process randomly drawing sub-corpora sizes, drawing sub-corpora
of the given sizes, and computing word associations. After the master process
has received an interruption6, word associations and their associated frequencies
are output by each sub-process and passed over to the master process which
sums up the frequencies of each word association produced by each sub-process
and computes association scores.

Experiments show that only very small, and insignificant differences in associ-
ations output exist between the mono-processing and multi-processing versions.
They are due to differences in sampling.

Table 1 gives the BLEU scores obtained when allotting 15 minutes to Any-
malign on one core, and 5 minutes on four cores. No significant difference is
observed.

Table 1. No significant difference in BLEU scores is observed when using the mono-
processor (original) or the multi-processor (M) versions of Anymalign to compute word
associations. The number of word associations differs by 11% = (575,641 - 517,274) /
517,274. The data used are described in Sec. 4.1.

Anymalign time (min) # of word assoc. BLEU (%)

original 15 517,274 34.0 ± 0.8
M 5 575,641 34.1 ± 0.8

Hierarchical Sub-sentential Alignment Cutnalign is easily parallelised by
observing that the sub-sentential alignment process for each different sentence
pair is independent from the other ones. The first two lines in Table 2 show the
times obtained on increasing amounts of sentence pairs using the same word asso-
ciations output by Anymalign. Using 4 cores divides the time by 3. Experiments
have shown that using 4 cores divides the time by 3.

By design, introducing multi-processing as described above does not affect
the quality of the final results, because the parallelised and non-parallelised
implementations are theoretically equivalent. We checked that sub-sentential
alignments outputs in both implementations are exactly the same.

6 Anymalign is an anytime process, and should be given a timeout.

Table 2. Times (in minutes) for different versions of Cutnalign and different numbers
of sentence pairs. The numbers in parentheses give the speed-up. The first line is the
original implementation. M means a multi-processor version (see Sect. 2.2, 4 cores
here). S means a version avoiding unnecessary subtractions of zeros (see Sect. 2.1).
Same data as for Table 1

of sentence pairs 2,500 5,000 7,500 10,000

original 62 (× 1) 141 (× 1) 212 (× 1) 288 (× 1)
M 19 (× 3) 45 (× 3) 64 (× 3) 95 (× 3)
S 1.5 (× 41) 4 (× 35) 5 (× 42) 7 (× 41)
M+S 0.5 (×124) 1 (×141) 1.5 (×141) 2 (×144)

3 Two Approximations in Hierarchical Sub-sentential
Alignment

The original sub-sentential alignment method proposed in [13] can be explained
in three main steps.

First, it builds a sentence pair matrix for a given sentence pair where the
translation strength between a source word s and a target word t is computed
as the product of the two association scores p(s|t) and p(t|s). In their proposal,
as well as in this paper, the association scores are computed by Anymalign.
Figure 2 illustrates such a sentence pair matrix. Notice that the content of the
cells in the sentence pair matrix is bidirectional by construction.

Fig. 2. Translation strengths in a French–English sentence pair matrix. Cells are grayed
from 0.0 (white) to 1.0 (black) on a logarithmic scale.

Then, the method searches for the best alignment by computing the best
segmentation of the sentences into sub-blocks recursively. This is done by com-
puting the optimal bi-clustering of a bipartite graph, as suggested in the work
of [18] for document clustering. For this purpose, a score named cut (see Equa-
tion 1) is computed that sums up all the cells in the two sub-blocks of a block
in the sentence pair matrix (see Fig. 3). In the definition of cut, W (X,Y) is the
sum of all translation strengths between all source and target words inside a
sub-block (X,Y).

cut(X,Y) = W (X,Y) + W (X,Y) (1)

In order to make the partition as dense as possible, [18] use a normalized variant
of the score named Ncut (see Equation 2)7. The best segmentation minimizes
this variant over all Ncut(X,Y) and Ncut(X̄, Y), thus making simultaneously
the decision of where to split and in which direction.

Ncut(X,Y) =
cut(X,Y)

cut(X,Y) + 2×W (X,Y)

+
cut(X̄, Ȳ)

cut(X̄, Ȳ) + 2×W (X̄, Ȳ)
(2)

Finally, as the method recursively segments the matrix, an alignment between
the pair of sentences is obtained when no block remains to segment.

3.1 Decision on the Direction First

When splitting a block inside the sentence pair matrix into two sub-blocks, the
segmentation method makes two theoretically separate decisions:

– which location, i.e., where to split, e.g., after (devons, act) in Fig. 3, and
– which direction, linear or cross, i.e., choosing either the black segmentation

or the white one in Fig. 3.

The original approach consists in making the two decisions simultaneously,
by selecting the max over all possible Ncut(X,Y) and Ncut(X̄, Y). For a block of
size N×M , there are 2×N×M Ncuts to compute. The original implementation
of Cutnalign adopts this approach.

Our approach will separate the two decisions. We will first decide the direc-
tion and then the location. In practice, the use of cut instead of Ncut allows to
make the decision on the direction without much difference in the final segmen-
tation result. This leads to a reduction in computation because the computation
of Ncut requires the computation of cut: making the decision in advance on cut
avoids the computation of Ncut for the other direction. In this way, only half
of the Ncuts, i.e., N ×M , are computed. As only one location inside a block is
selected afterwards, possibly incorrect decisions on directions do remain unseen,
and the final segmentation is not affected by them.

7 Notice that, by definition: Ncut(X,Y) = Ncut(X̄, Ȳ) and Ncut(X, Ȳ) = Ncut(X̄, Y).
The same holds for cut.

Fig. 3. Illustration of the segmentation of sentences S = X.X and T = Y.Y . Here the
block we start with is the entire matrix. Splitting horizontally and vertically into two
parts gives four sub-blocks. There are two possible directions of segmentation: linear
with the two sub-blocks in black, or cross with the two sub-blocks in white. The process
is repeated recursively in the selected direction.

Table 3 reports the ratio of difference in final segmentation between the
original approach and our approach on 350,000 French-English sentence pairs.
It is only 0.3% in total. Differences start to appear only after the third level of
segmentation and occur only once in 10,000 cases on that level. These figures
show that the use of cut, instead of Ncut, for the decision on the direction does
not significantly affect the final segmentation results. cut is enough to determine
direction, while the introduction of its variant, Ncut, is justified to select the
most dense pairs of sub-blocks, so as to lead to better alignments. As for time,
a reduction of around 1/3 of computation time is observed. This will also be
visible in Table 6 where the versions of Cutnalign denoted A use cut instead
of Ncut for the decision on direction.

Figure 2 visualised a sentence pair matrix before sub-sentential alignment.
Following intuition, the higher the translation strength between two words, the
more they are prone to participate in the final sub-sentential alignment. Fig-
ure 4 shows this. Experiments on 347,614 French–English sentence pair matrices.
showed, that, in average, in each sentence, less than 3% of the word pairs have a
translation strength higher than 0.1. More than 75% of these word pairs belong
to the final sub-sentential alignment. We will now exploit this trend to reduce
the search space in a sentence pair matrix.

Table 3. Percentage of segmentation differences when using cut instead of Ncut to
decide for direction, on 347,614 French–English sentence pairs. The first column is the
level of segmentation. The two middle columns give the average length of sub-blocks
in source and target at that level. The last column gives the percentage of differences
in the final segmentation when using approximate calculation; the reference is the final
segmentation obtained using the original method.

Segmentation level Avg length of block Differences (%)
in source in target

(in words)

0 31 28 0.00
1 21 19 0.00
2 15 14 0.00
3 11 10 0.01
4 8 7 0.02
5 7 6 0.04
6 6 5 0.07
7 5 5 0.09

>7 4 3 0.11

Fig. 4. Percentage of cells in the matrix with a translation strength inside the bin (black
bars) and percentage of word pairs actually participating in the final sub-sentential
alignment (white bars). The bars are drawn for each logarithmic bin on the horizontal
axis: [0, 10−9), [10−9, 10−8), . . . [0.1, 1].

3.2 Reduction of the Search Space

So as to decide the direction and the location for splitting into two sub-blocks,
cuts are computed at each point inside a block. We propose to compute a kind
of mask on the sentence pair matrix so as to restrict in advance the choice for
splitting points at any level during segmentation.

In a preprocessing phase, all cells with a translation strength higher than a
threshold are identified. We call them peak cells. As an illustration, consider the 5
black cells with a translation strength higher than 0.1 in the top matrix on the
left of Fig. 5 (same as Fig. 2): (je, i), (nous, we), (nous, our), (nos, our) and (., .).

Fig. 5. Reduction of the search space in a French–English sentence pair matrix (same
as Fig. 2) to find the sub-sentential alignment. Cells are grayed from 0.0 (white) to 1.0
(black) on a logarithmic scale to visualise translation strengths.

The next phase, the reduction phase, processes the matrix step by step. At
the beginning of the first step, the domain is the entire sentence pair matrix and
the search space is empty. In each step, the following operations are performed.

Firstly, the smallest rectangle with the largest number of peak cells is de-
termined. The reason to select such a rectangle follows the intuition behind the
introduction of Ncut: by approximation, the smallest rectangle with the largest
number of peak cells should lead to the extraction of the densest sub-blocks.
Necessarily, such a rectangle is delimited by some peak cells, which are added
to the search space. The top matrix on the right in Fig. 5 shows the rectangle
obtained in the first iteration step. It is the outer rectangle visualized by dotted
lines. It is delimited by the peak cells (je, i) and (., .). The bottom matrix shows
the one obtained in the second iteration step (outer rectangle again). It is delim-
ited by the peak cells: (nous, we), (nous, our) and (nos, our). In all generality,
peak cells do not necessarily lie in the corners; Figure 5 is a particular case.

Then, the next domain for the next step of iteration is determined by leaving
out the cells in the contour which are not peak cells. In the two matrices on the
right of Fig. 5, such new domains are the inner rectangles delimited by dotted
lines. This leaves out the cells containing a grey cross in the figure. This can
be done with some confidence because, by construction, sub-blocks extracted
from such locations will leave out many well aligned word pairs and cannot be
expected to yield a promising Ncut. On the contrary, one can expect that sub-
blocks determined by splitting on positions in the new domain will be denser in
well aligned word pairs.

Finally, the corner regions between two successive smallest rectangles are
added to the search space (see bottom left matrix in Fig. 5), because the positions
inside these regions have a good chance to provide a higher number of well aligned
word pairs when splitting into sub-blocks.

The new domain is passed to the next iteration step. The iteration process
stops when the smallest rectangle contains one or zero peak cell. In this case,
the search space is not reduced and used as is.

The final reduced search space is thus made out of all the peak cells, all
the corner regions between two successive smallest rectangles and the last inner
rectangle. It usually takes the rough shape of a cross extending over the sen-
tence pair matrix. This reduced search space is then passed over to the general
sub-sentential alignment process which will no more be allowed to consider any
possible positions to split into sub-blocks, but will be confined to the positions
in the reduced search space at any level. As a consequence, processing time will
be reduced: for well-balanced cases, a reduction from a computation in O(n2) to
O(n log n) is obtained. The experiments reported hereafter also show that the
reduction in search space does not affect BLEU scores.

The procedure described above for reduction of space was first implemented
in Python. Its re-implementation in C divides the processing time by 6 (see
Table 6, last line).

4 Experiments

4.1 Overview: Tools and Data

We evaluate our work by building PB-SMT systems using the Moses toolkit [11],
lexicalised reordering models [10] and the KenLM Language Modelling toolkit [8].
Accuracy relatively to translation references is assessed using BLEU. Baseline
systems are built using GIZA++ or Fast align. For systems built using Any-
malign and Cutnalign, the overall process to build translation tables has been
illustrated in Fig. 1.

All the experiments mentioned in this paper use data from corresponding
parts of the Europarl parallel corpus v3 [9], so that BLEU scores can be compared
across language pairs, as the training, tuning and test sets correspond across
languages. The training corpus is made of 347,614 sentences; 500 sentences are
used for tuning; the test set contains 5,000 lines.

We use 3 language pairs in both directions involving 5 European languages:
English (en), French (fr), Spanish (es), Portuguese (pt), Finnish (fi): fr–en as
usual test languages, fi–en, i.e., agglutinative language vs. isolating language,
and es–pt, as an example of close languages. Statistics on the data are given in
Table 4.

Table 4. Statistics on the data used (M = million)

en fr es pt fi

Train sentences 347,614
word tokens 10.01M 11.62M 10,52M 10.35M 7.21M
word types 57,728 72,042 124,035 116,165 289,054

Tune sentences 500
word tokens 14,697 17,132 15,440 15,348 10,580
word types 2,929 3,395 3,489 3,595 4,576

Test sentences 5,000

4.2 Timeout and Max Length of Phrases for Anymalign

As Anymalign should be given a timeout, we first inquire the relationship be-
tween the timeout and translation accuracy. In addition, we also inquire the
influence of the max length of the phrases output by Anymalign on translation
accuracy.

Table 5 shows that 15 minutes is enough to get comparable translation accu-
racy. For all language pairs and timeouts, almost all the best scores are obtained
for a max length of phrases set to 2. Drawing from these results, the experiments

Table 5. Translation accuracy (BLEU) against timeout and maximal length of phrases
output by Anymalign for three language pairs. Here the test set contains 38,000 lines.

Language pair Max length BLEU for 6= timeouts
of phrases 15 min 30 min 60 min 120 min

1 33.9 34.1 34.0 34.1
fr–en 2 34.0 34.3 34.1 34.2

3 34.0 33.7 34.4 34.3
4 33.7 33.8 34.2 34.1

1 38.5 38.6 38.6 38.6
pt–es 2 38.5 38.7 38.7 38.8

3 38.5 38.4 38.8 38.9
4 38.4 38.5 38.6 38.8

1 23.0 23.3 23.6 23.8
fi–en 2 23.3 23.2 23.8 24.2

3 22.8 23.4 23.5 23.7
4 22.7 23.2 23.6 23.9

reported hereafter will adopt the following settings: Anymalign will be run with
a max length of phrases set to 2. This will be denoted by Anymalign -i2. The
original version of Anymalign will be given a time-out of 15 minutes, while its
multi-processor version will be given a time-out of 5 minutes, according to the
acceleration reported in Sec. 2.2.

4.3 Incremental Improvements

We incrementally evaluated the improvements presented in the previous sections
on French–English data. In order to evaluate the difference in the final sub-
sentential alignments obtained, we measured the alignment error rate (AER) [1]
by reference to the results obtained using the original methods without any
improvement. As seen in Table 6, the multi-processing implementation of Any-
malign delivers more word alignments than the mono-processor implementation
in 3 times less time. In total, we could divide the training time by 750 without
affecting the BLEU scores. Differences in alignements are observed but positively
impact the results.

4.4 Comparison with Fast align

We compare the integration of all improvements with the fastest probabilistic
state-of-the-art alignment method: Fast align. We run it with default settings
in two directions, source to target and target to source, to produce alignments
from which a phrase table is extracted using the grow-diag-final-and heuristic.

Table 6. Incremental gains in time on French–English data. The max length of phrases
output by Anymalign is set to 2 in all experiments. M denotes a multi-processing version
(number of cores used: 4). For Cutnalign, S avoids unnecessary subtraction of zeros; A
uses cut instead of Ncut to make the decision on direction of segmentation (Sect. 3.1);
R implements reduction of search space (Sect. 3.2, threshold for translation strength set
to 0.5); C uses re-implementation in C of core component of Cutnalign. The alignment
time is the time for Anymalign plus the time for Cutnalign. In total a speed-up by 750
has been obtained (4,515 / 6).

Anymalign -i2 + Cutnalign Alignment time (min) AER (%) BLEU (%)

original + original 15 + 4,500 – 34.0 ± 0.8
original + M 15 + 1,594 0.0 34.0 ± 0.8
original + M+S 15 + 31 0.0 34.0 ± 0.8
M + M+S 5 + 32 0.0 34.1 ± 0.8
M + M+S+A 5 + 19 5.4 34.2 ± 0.8
M + M+S+R 5 + 15 8.8 34.0 ± 0.8
M + M+S+A+R 5 + 6 11.8 34.1 ± 0.8
M + M+S+A+R+C 5 + 1 11.8 34.1 ± 0.8

For Anymalign, we use the options -i 2 -t 300, i.e., we set a preferred length of
up to 2 words in associations, and a timeout of 5 minutes.

The results of the experiments are presented in Table 7. Our improvements
allow the associative methods to beat Fast align in time. In addition, as much
smaller phrase tables are extracted by our method, lower times for decoding
are observed. Alignments produced with our improvements yield slightly lower
scores than those obtained with Fast align on French–English and Spanish–
Portuguese in both directions, but with no statistically significant difference in
each case as the confidence intervals show. Unfortunately, on Finnish–English, in
both directions, our BLEU scores are significantly lower. This may come from an
insufficient timeout for Anymalign, 5 minutes, chosen for the sake of consistency
across all experiments reported in this section.

5 Conclusion

We presented multi-processing implementations of the multilingual sampling-
based alignment method [14] and of the hierarchical sub-sentential alignment
method [13], two associative methods which, by essence allow for this. We intro-
duced two approximations in the hierarchical sub-sentential alignment method:
we modified how to decide the direction of split and we reduced the search space.
The removal of some unnecessary computations, and the re-implementation of
core components in C were also introduced. We obtained considerable gains in
time so that the combination of these two associative methods becomes compet-
itive with probabilistic methods.

The new multi-processing version of Anymalign divides the computation
times for word associations by 3 on a 4-core computer. Elimination of unneces-

Table 7. Comparison of BLEU scores and alignment times in 6 language pairs with
different aligners

Language pair Aligner Align. time (min) BLEU (%)

pt-es MGIZA++ 150 39.1 ± 0.8
Fast align 17 38.9 ± 0.8
M + M+S+A+R+C 7 38.8 ± 0.8

es-pt MGIZA++ 140 37.1 ± 0.8
Fast align 17 36.9 ± 0.8
M + M+S+A+R+C 7 36.6 ± 0.8

en-fr MGIZA++ 150 36.3 ± 0.7
Fast align 17 36.1 ± 0.7
M + M+S+A+R+C 7 36.0 ± 0.7

fr-en MGIZA++ 170 34.5 ± 0.8
Fast align 17 34.5 ± 0.8
M + M+S+A+R+C 7 34.1 ± 0.8

fi-en MGIZA++ 120 26.1 ± 0.8
Fast align 14 25.0 ± 0.8
M + M+S+A+R+C 6 23.9 ± 0.8

en-fi MGIZA++ 110 16.3 ± 0.8
Fast align 14 16.7 ± 0.8
M + M+S+A+R+C 6 15.7 ± 0.8

sary computations of special cases in Cutnalign divides the computation times of
sub-sentential alignments by more than 40 times in comparison with the original
implementation described in [13]. Combined with multi-processing, this leads to
a speed-up of roughly 140 times on a 4-core computer. The latest version of
Cutnalign, which also includes approximations in decisions and reduction of the
search space, and C implementation of core components runs approximately
4,500 times faster than the original implementation. The combination of the two
new versions of Anymalign and Cutnalign result in an overall alignment process
that can be faster than Fast align while delivering comparable results.

As for comparison with probabilistic methods, some may argue that the com-
parison of a probabilistic method running on one processor with an associative
method running on 4 cores is unfair. We claim on the contrary that it is fair be-
cause associative methods intrinsically cater for this at no expense of the quality
of their results. What would be unfair is precisely to forbid associative methods
to make use of their inherent advantages.

Our main task in the near future is to get rid of the threshold manually set
for the reduction of the search space in the hierarchical sub-sentential alignment
method. We want to find a way to automatically determine a threshold based
on an inspection of the distribution of translation strengths in sentence pair
matrices.

As a final note, it is worth mentioning that both Anymalign and Cutnalign
are by essence bidirectional methods. They compute the bidirectional parameters

or the sub-sentential alignments in one pass, on the contrary to MGIZA++ or
Fast align which have to be run in both directions and on the contrary to the first
step in grow-dial-final-and which builds two matrices in both directions before
merging.

References

1. Ayan, N.F., Dorr, B.J.: Going beyond AER: An extensive analysis of word align-
ments and their impact on MT. In: Proc. of COLING/ACL. pp. 9–16 (2006)

2. Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., Mercer, R.L.: The mathematics of
statistical machine translation: Parameter estimation. Computational linguistics
19(2), 263–311 (1993)

3. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Com-
putational linguistics 19(1), 61–74 (1993)

4. Dyer, C., Chahuneau, V., Smith, N.A.: A simple, fast, and effective reparameteri-
zation of IBM model 2. In: Proc. of HLT-NAACL. pp. 644–648 (2013)

5. Gale, W.A., Church, K.W.: Identifying word correspondences in parallel texts. In:
Proc. of the workshop on Speech and Natural Language. vol. 91, pp. 152–157 (1991)

6. Gao, Q., Vogel, S.: Parallel implementations of word alignment tool. In: Software
Engineering, Testing, and Quality Assurance for Natural Language Processing. pp.
49–57 (2008)

7. Gong, L., Max, A., Yvon, F.: Improving bilingual sub-sentential alignment by
sampling-based transpotting. In: Proc. of IWSLT. pp. 243–250 (2013)

8. Heafield, K.: Kenlm: Faster and smaller language model queries. In: Proc. of the
6th Workshop on Statistical Machine Translation. pp. 187–197 (2011)

9. Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: Proc.
of Machine Translation Summit. vol. 5, pp. 79–86 (2005)

10. Koehn, P., Axelrod, A., Birch, A., Callison-Burch, C., Osborne, M., Talbot, D.,
White, M.: Edinburgh system description for the 2005 IWSLT speech translation
evaluation. In: Proc. of IWSLT. pp. 68–75 (2005)

11. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R.: Moses: Open source toolkit for statistical
machine translation. In: Proc. of ACL (Poster sessions). pp. 177–180 (2007)

12. Lardilleux, A., Yvon, F., Lepage, Y.: Hierarchical sub-sentential alignment with
Anymalign. In: Proc. of EAMT 2012. pp. 279–286 (2012)

13. Lardilleux, A., Yvon, F., Lepage, Y.: Generalizing sampling-based multilingual
alignment. Machine translation 27(1), 1–23 (2013)

14. Levenberg, A., Callison-Burch, C., Osborne, M.: Stream-based translation models
for statistical machine translation. In: Proc. of HLT-NAACL. pp. 394–402 (2010)

15. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment mod-
els. Computational linguistics 29(1), 19–51 (2003)

16. Smäıli, K., Jamoussi, S., Langlois, D., Haton, J.P.: Statistical feature language
model. In: Proc. of ICSLP. pp. 1357–1360 (2004)

17. Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite graph partitioning and
data clustering. In: Proc. of int. conf. on Info. and Knowledge Management. pp.
25–32 (2001)

